Yang, Jianxin
Qwen2.5 Technical Report
Qwen, null, :, null, Yang, An, Yang, Baosong, Zhang, Beichen, Hui, Binyuan, Zheng, Bo, Yu, Bowen, Li, Chengyuan, Liu, Dayiheng, Huang, Fei, Wei, Haoran, Lin, Huan, Yang, Jian, Tu, Jianhong, Zhang, Jianwei, Yang, Jianxin, Yang, Jiaxi, Zhou, Jingren, Lin, Junyang, Dang, Kai, Lu, Keming, Bao, Keqin, Yang, Kexin, Yu, Le, Li, Mei, Xue, Mingfeng, Zhang, Pei, Zhu, Qin, Men, Rui, Lin, Runji, Li, Tianhao, Tang, Tianyi, Xia, Tingyu, Ren, Xingzhang, Ren, Xuancheng, Fan, Yang, Su, Yang, Zhang, Yichang, Wan, Yu, Liu, Yuqiong, Cui, Zeyu, Zhang, Zhenru, Qiu, Zihan
In this report, we introduce Qwen2.5, a comprehensive series of large language models (LLMs) designed to meet diverse needs. Compared to previous iterations, Qwen 2.5 has been significantly improved during both the pre-training and post-training stages. In terms of pre-training, we have scaled the high-quality pre-training datasets from the previous 7 trillion tokens to 18 trillion tokens. This provides a strong foundation for common sense, expert knowledge, and reasoning capabilities. In terms of post-training, we implement intricate supervised finetuning with over 1 million samples, as well as multistage reinforcement learning. Post-training techniques enhance human preference, and notably improve long text generation, structural data analysis, and instruction following. To handle diverse and varied use cases effectively, we present Qwen2.5 LLM series in rich sizes. Open-weight offerings include base and instruction-tuned models, with quantized versions available. In addition, for hosted solutions, the proprietary models currently include two mixture-of-experts (MoE) variants: Qwen2.5-Turbo and Qwen2.5-Plus, both available from Alibaba Cloud Model Studio. Qwen2.5 has demonstrated top-tier performance on a wide range of benchmarks evaluating language understanding, reasoning, mathematics, coding, human preference alignment, etc. Specifically, the open-weight flagship Qwen2.5-72B-Instruct outperforms a number of open and proprietary models and demonstrates competitive performance to the state-of-the-art open-weight model, Llama-3-405B-Instruct, which is around 5 times larger. Qwen2.5-Turbo and Qwen2.5-Plus offer superior cost-effectiveness while performing competitively against GPT-4o-mini and GPT-4o respectively. Additionally, as the foundation, Qwen2.5 models have been instrumental in training specialized models such as Qwen2.5-Math, Qwen2.5-Coder, QwQ, and multimodal models.
Qwen2 Technical Report
Yang, An, Yang, Baosong, Hui, Binyuan, Zheng, Bo, Yu, Bowen, Zhou, Chang, Li, Chengpeng, Li, Chengyuan, Liu, Dayiheng, Huang, Fei, Dong, Guanting, Wei, Haoran, Lin, Huan, Tang, Jialong, Wang, Jialin, Yang, Jian, Tu, Jianhong, Zhang, Jianwei, Ma, Jianxin, Yang, Jianxin, Xu, Jin, Zhou, Jingren, Bai, Jinze, He, Jinzheng, Lin, Junyang, Dang, Kai, Lu, Keming, Chen, Keqin, Yang, Kexin, Li, Mei, Xue, Mingfeng, Ni, Na, Zhang, Pei, Wang, Peng, Peng, Ru, Men, Rui, Gao, Ruize, Lin, Runji, Wang, Shijie, Bai, Shuai, Tan, Sinan, Zhu, Tianhang, Li, Tianhao, Liu, Tianyu, Ge, Wenbin, Deng, Xiaodong, Zhou, Xiaohuan, Ren, Xingzhang, Zhang, Xinyu, Wei, Xipin, Ren, Xuancheng, Liu, Xuejing, Fan, Yang, Yao, Yang, Zhang, Yichang, Wan, Yu, Chu, Yunfei, Liu, Yuqiong, Cui, Zeyu, Zhang, Zhenru, Guo, Zhifang, Fan, Zhihao
This report introduces the Qwen2 series, the latest addition to our large language models and large multimodal models. We release a comprehensive suite of foundational and instruction-tuned language models, encompassing a parameter range from 0.5 to 72 billion, featuring dense models and a Mixture-of-Experts model. Qwen2 surpasses most prior open-weight models, including its predecessor Qwen1.5, and exhibits competitive performance relative to proprietary models across diverse benchmarks on language understanding, generation, multilingual proficiency, coding, mathematics, and reasoning. The flagship model, Qwen2-72B, showcases remarkable performance: 84.2 on MMLU, 37.9 on GPQA, 64.6 on HumanEval, 89.5 on GSM8K, and 82.4 on BBH as a base language model. The instruction-tuned variant, Qwen2-72B-Instruct, attains 9.1 on MT-Bench, 48.1 on Arena-Hard, and 35.7 on LiveCodeBench. Moreover, Qwen2 demonstrates robust multilingual capabilities, proficient in approximately 30 languages, spanning English, Chinese, Spanish, French, German, Arabic, Russian, Korean, Japanese, Thai, Vietnamese, and more, underscoring its versatility and global reach. To foster community innovation and accessibility, we have made the Qwen2 model weights openly available on Hugging Face and ModelScope, and the supplementary materials including example code on GitHub. These platforms also include resources for quantization, fine-tuning, and deployment, facilitating a wide range of applications and research endeavors.
LongQLoRA: Efficient and Effective Method to Extend Context Length of Large Language Models
Yang, Jianxin
We present LongQLoRA, an efficient and effective method to extend context length of large language models with less training resources. LongQLoRA combines the advantages of Position Interpolation, QLoRA and Shift Short Attention of LongLoRA. With a single 32GB V100 GPU, LongQLoRA can extend the context length of LLaMA2 7B and 13B from 4096 to 8192 and even to 12k within 1000 finetuning steps. LongQLoRA achieves competitive perplexity performance on PG19 and Proof-pile datasets, our model outperforms LongLoRA and is very close to MPT-7B-8K within the evaluation context length of 8192. We collect and build 39k long instruction data to extend context length of Vicuna-13B from 4096 to 8192 and achieve good performance both in long and short context generation task. We also do some ablation experiments to study the effect of LoRA rank, finetuning steps and attention patterns in inference.The model weights, training data and code are avaliable at https://github.com/yangjianxin1/LongQLoRA.
FashionSAP: Symbols and Attributes Prompt for Fine-grained Fashion Vision-Language Pre-training
Han, Yunpeng, Zhang, Lisai, Chen, Qingcai, Chen, Zhijian, Li, Zhonghua, Yang, Jianxin, Cao, Zhao
Fashion vision-language pre-training models have shown efficacy for a wide range of downstream tasks. However, general vision-language pre-training models pay less attention to fine-grained domain features, while these features are important in distinguishing the specific domain tasks from general tasks. We propose a method for fine-grained fashion vision-language pre-training based on fashion Symbols and Attributes Prompt (FashionSAP) to model fine-grained multi-modalities fashion attributes and characteristics. Firstly, we propose the fashion symbols, a novel abstract fashion concept layer, to represent different fashion items and to generalize various kinds of fine-grained fashion features, making modelling fine-grained attributes more effective. Secondly, the attributes prompt method is proposed to make the model learn specific attributes of fashion items explicitly. We design proper prompt templates according to the format of fashion data. Comprehensive experiments are conducted on two public fashion benchmarks, i.e., FashionGen and FashionIQ, and FashionSAP gets SOTA performances for four popular fashion tasks. The ablation study also shows the proposed abstract fashion symbols, and the attribute prompt method enables the model to acquire fine-grained semantics in the fashion domain effectively. The obvious performance gains from FashionSAP provide a new baseline for future fashion task research.