Plotting

 Yang, Jian


MambaLLIE: Implicit Retinex-Aware Low Light Enhancement with Global-then-Local State Space

arXiv.org Artificial Intelligence

Recent advances in low light image enhancement have been dominated by Retinex-based learning framework, leveraging convolutional neural networks (CNNs) and Transformers. However, the vanilla Retinex theory primarily addresses global illumination degradation and neglects local issues such as noise and blur in dark conditions. Moreover, CNNs and Transformers struggle to capture global degradation due to their limited receptive fields. While state space models (SSMs) have shown promise in the long-sequence modeling, they face challenges in combining local invariants and global context in visual data. In this paper, we introduce MambaLLIE, an implicit Retinex-aware low light enhancer featuring a global-then-local state space design. We first propose a Local-Enhanced State Space Module (LESSM) that incorporates an augmented local bias within a 2D selective scan mechanism, enhancing the original SSMs by preserving local 2D dependency. Additionally, an Implicit Retinex-aware Selective Kernel module (IRSK) dynamically selects features using spatially-varying operations, adapting to varying inputs through an adaptive kernel selection process. Our Global-then-Local State Space Block (GLSSB) integrates LESSM and IRSK with LayerNorm as its core. This design enables MambaLLIE to achieve comprehensive global long-range modeling and flexible local feature aggregation. Extensive experiments demonstrate that MambaLLIE significantly outperforms state-of-the-art CNN and Transformer-based methods. Project Page: https://mamballie.github.io/anon/


ECLIPSE: Semantic Entropy-LCS for Cross-Lingual Industrial Log Parsing

arXiv.org Artificial Intelligence

Log parsing, a vital task for interpreting the vast and complex data produced within software architectures faces significant challenges in the transition from academic benchmarks to the industrial domain. Existing log parsers, while highly effective on standardized public datasets, struggle to maintain performance and efficiency when confronted with the sheer scale and diversity of real-world industrial logs. These challenges are two-fold: 1) massive log templates: The performance and efficiency of most existing parsers will be significantly reduced when logs of growing quantities and different lengths; 2) Complex and changeable semantics: Traditional template-matching algorithms cannot accurately match the log templates of complicated industrial logs because they cannot utilize cross-language logs with similar semantics. To address these issues, we propose ECLIPSE, Enhanced Cross-Lingual Industrial log Parsing with Semantic Entropy-LCS, since cross-language logs can robustly parse industrial logs. On the one hand, it integrates two efficient data-driven template-matching algorithms and Faiss indexing. On the other hand, driven by the powerful semantic understanding ability of the Large Language Model (LLM), the semantics of log keywords were accurately extracted, and the retrieval space was effectively reduced. Notably, we launch a Chinese and English cross-platform industrial log parsing benchmark ECLIPSE- BENCH to evaluate the performance of mainstream parsers in industrial scenarios. Our experimental results across public benchmarks and ECLIPSE- BENCH underscore the superior performance and robustness of our proposed ECLIPSE. Notably, ECLIPSE both delivers state-of-the-art performance when compared to strong baselines and preserves a significant edge in processing efficiency.


Automated Metaheuristic Algorithm Design with Autoregressive Learning

arXiv.org Artificial Intelligence

Automated design of metaheuristic algorithms offers an attractive avenue to reduce human effort and gain enhanced performance beyond human intuition. Current automated methods design algorithms within a fixed structure and operate from scratch. This poses a clear gap towards fully discovering potentials over the metaheuristic family and fertilizing from prior design experience. To bridge the gap, this paper proposes an autoregressive learning-based designer for automated design of metaheuristic algorithms. Our designer formulates metaheuristic algorithm design as a sequence generation task, and harnesses an autoregressive generative network to handle the task. This offers two advances. First, through autoregressive inference, the designer generates algorithms with diverse lengths and structures, enabling to fully discover potentials over the metaheuristic family. Second, prior design knowledge learned and accumulated in neurons of the designer can be retrieved for designing algorithms for future problems, paving the way to continual design of algorithms for open-ended problem-solving. Extensive experiments on numeral benchmarks and real-world problems reveal that the proposed designer generates algorithms that outperform all human-created baselines on 24 out of 25 test problems. The generated algorithms display various structures and behaviors, reasonably fitting for different problem-solving contexts. Code will be released after paper publication.


mABC: multi-Agent Blockchain-Inspired Collaboration for root cause analysis in micro-services architecture

arXiv.org Artificial Intelligence

The escalating complexity of micro-services architecture in cloud-native technologies poses significant challenges for maintaining system stability and efficiency. To conduct root cause analysis (RCA) and resolution of alert events, we propose a pioneering framework, multi-Agent Blockchain-inspired Collaboration for root cause analysis in micro-services architecture (mABC), to revolutionize the AI for IT operations (AIOps) domain, where multiple agents based on the powerful large language models (LLMs) perform blockchain-inspired voting to reach a final agreement following a standardized process for processing tasks and queries provided by Agent Workflow. Specifically, seven specialized agents derived from Agent Workflow each provide valuable insights towards root cause analysis based on their expertise and the intrinsic software knowledge of LLMs collaborating within a decentralized chain. To avoid potential instability issues in LLMs and fully leverage the transparent and egalitarian advantages inherent in a decentralized structure, mABC adopts a decision-making process inspired by blockchain governance principles while considering the contribution index and expertise index of each agent. Experimental results on the public benchmark AIOps challenge dataset and our created train-ticket dataset demonstrate superior performance in accurately identifying root causes and formulating effective solutions, compared to previous strong baselines. The ablation study further highlights the significance of each component within mABC, with Agent Workflow, multi-agent, and blockchain-inspired voting being crucial for achieving optimal performance. mABC offers a comprehensive automated root cause analysis and resolution in micro-services architecture and achieves a significant improvement in the AIOps domain compared to existing baselines


Heterogeneous Subgraph Transformer for Fake News Detection

arXiv.org Artificial Intelligence

Fake news is pervasive on social media, inflicting substantial harm on public discourse and societal well-being. We investigate the explicit structural information and textual features of news pieces by constructing a heterogeneous graph concerning the relations among news topics, entities, and content. Through our study, we reveal that fake news can be effectively detected in terms of the atypical heterogeneous subgraphs centered on them, which encapsulate the essential semantics and intricate relations between news elements. However, suffering from the heterogeneity, exploring such heterogeneous subgraphs remains an open problem. To bridge the gap, this work proposes a heterogeneous subgraph transformer (HeteroSGT) to exploit subgraphs in our constructed heterogeneous graph. In HeteroSGT, we first employ a pre-trained language model to derive both word-level and sentence-level semantics. Then the random walk with restart (RWR) is applied to extract subgraphs centered on each news, which are further fed to our proposed subgraph Transformer to quantify the authenticity. Extensive experiments on five real-world datasets demonstrate the superior performance of HeteroSGT over five baselines. Further case and ablation studies validate our motivation and demonstrate that performance improvement stems from our specially designed components.


RoNID: New Intent Discovery with Generated-Reliable Labels and Cluster-friendly Representations

arXiv.org Artificial Intelligence

New Intent Discovery (NID) strives to identify known and reasonably deduce novel intent groups in the open-world scenario. But current methods face issues with inaccurate pseudo-labels and poor representation learning, creating a negative feedback loop that degrades overall model performance, including accuracy and the adjusted rand index. To address the aforementioned challenges, we propose a Robust New Intent Discovery (RoNID) framework optimized by an EM-style method, which focuses on constructing reliable pseudo-labels and obtaining cluster-friendly discriminative representations. RoNID comprises two main modules: reliable pseudo-label generation module and cluster-friendly representation learning module. Specifically, the pseudo-label generation module assigns reliable synthetic labels by solving an optimal transport problem in the E-step, which effectively provides high-quality supervised signals for the input of the cluster-friendly representation learning module. To learn cluster-friendly representation with strong intra-cluster compactness and large inter-cluster separation, the representation learning module combines intra-cluster and inter-cluster contrastive learning in the M-step to feed more discriminative features into the generation module. RoNID can be performed iteratively to ultimately yield a robust model with reliable pseudo-labels and cluster-friendly representations. Experimental results on multiple benchmarks demonstrate our method brings substantial improvements over previous state-of-the-art methods by a large margin of +1 +4 points.


Elevating Spectral GNNs through Enhanced Band-pass Filter Approximation

arXiv.org Artificial Intelligence

Spectral Graph Neural Networks (GNNs) have attracted great attention due to their capacity to capture patterns in the frequency domains with essential graph filters. Polynomial-based ones (namely poly-GNNs), which approximately construct graph filters with conventional or rational polynomials, are routinely adopted in practice for their substantial performances on graph learning tasks. However, previous poly-GNNs aim at achieving overall lower approximation error on different types of filters, e.g., low-pass and high-pass, but ignore a key question: \textit{which type of filter warrants greater attention for poly-GNNs?} In this paper, we first show that poly-GNN with a better approximation for band-pass graph filters performs better on graph learning tasks. This insight further sheds light on critical issues of existing poly-GNNs, i.e., those poly-GNNs achieve trivial performance in approximating band-pass graph filters, hindering the great potential of poly-GNNs. To tackle the issues, we propose a novel poly-GNN named TrigoNet. TrigoNet constructs different graph filters with novel trigonometric polynomial, and achieves leading performance in approximating band-pass graph filters against other polynomials. By applying Taylor expansion and deserting nonlinearity, TrigoNet achieves noticeable efficiency among baselines. Extensive experiments show the advantages of TrigoNet in both accuracy performances and efficiency.


Spectral GNN via Two-dimensional (2-D) Graph Convolution

arXiv.org Artificial Intelligence

Spectral Graph Neural Networks (GNNs) have achieved tremendous success in graph learning. As an essential part of spectral GNNs, spectral graph convolution extracts crucial frequency information in graph data, leading to superior performance of spectral GNNs in downstream tasks. However, in this paper, we show that existing spectral GNNs remain critical drawbacks in performing the spectral graph convolution. Specifically, considering the spectral graph convolution as a construction operation towards target output, we prove that existing popular convolution paradigms cannot construct the target output with mild conditions on input graph signals, causing spectral GNNs to fall into suboptimal solutions. To address the issues, we rethink the spectral graph convolution from a more general two-dimensional (2-D) signal convolution perspective and propose a new convolution paradigm, named 2-D graph convolution. We prove that 2-D graph convolution unifies existing graph convolution paradigms, and is capable to construct arbitrary target output. Based on the proposed 2-D graph convolution, we further propose ChebNet2D, an efficient and effective GNN implementation of 2-D graph convolution through applying Chebyshev interpolation. Extensive experiments on benchmark datasets demonstrate both effectiveness and efficiency of the ChebNet2D.


m3P: Towards Multimodal Multilingual Translation with Multimodal Prompt

arXiv.org Artificial Intelligence

Multilingual translation supports multiple translation directions by projecting all languages in a shared space, but the translation quality is undermined by the difference between languages in the text-only modality, especially when the number of languages is large. To bridge this gap, we introduce visual context as the universal language-independent representation to facilitate multilingual translation. In this paper, we propose a framework to leverage the multimodal prompt to guide the Multimodal Multilingual neural Machine Translation (m3P), which aligns the representations of different languages with the same meaning and generates the conditional vision-language memory for translation. We construct a multilingual multimodal instruction dataset (InstrMulti102) to support 102 languages. Our method aims to minimize the representation distance of different languages by regarding the image as a central language. Experimental results show that m3P outperforms previous text-only baselines and multilingual multimodal methods by a large margin. Furthermore, the probing experiments validate the effectiveness of our method in enhancing translation under the low-resource and massively multilingual scenario.


New Intent Discovery with Attracting and Dispersing Prototype

arXiv.org Artificial Intelligence

New Intent Discovery (NID) aims to recognize known and infer new intent categories with the help of limited labeled and large-scale unlabeled data. The task is addressed as a feature-clustering problem and recent studies augment instance representation. However, existing methods fail to capture cluster-friendly representations, since they show less capability to effectively control and coordinate within-cluster and between-cluster distances. Tailored to the NID problem, we propose a Robust and Adaptive Prototypical learning (RAP) framework for globally distinct decision boundaries for both known and new intent categories. Specifically, a robust prototypical attracting learning (RPAL) method is designed to compel instances to gravitate toward their corresponding prototype, achieving greater within-cluster compactness. To attain larger between-cluster separation, another adaptive prototypical dispersing learning (APDL) method is devised to maximize the between-cluster distance from the prototype-to-prototype perspective. Experimental results evaluated on three challenging benchmarks (CLINC, BANKING, and StackOverflow) of our method with better cluster-friendly representation demonstrate that RAP brings in substantial improvements over the current state-of-the-art methods (even large language model) by a large margin (average +5.5% improvement).