Goto

Collaborating Authors

 Yang, Jiamin


Can Domain Experts Rely on AI Appropriately? A Case Study on AI-Assisted Prostate Cancer MRI Diagnosis

arXiv.org Artificial Intelligence

Despite the growing interest in human-AI decision making, experimental studies with domain experts remain rare, largely due to the complexity of working with domain experts and the challenges in setting up realistic experiments. In this work, we conduct an in-depth collaboration with radiologists in prostate cancer diagnosis based on MRI images. Building on existing tools for teaching prostate cancer diagnosis, we develop an interface and conduct two experiments to study how AI assistance and performance feedback shape the decision making of domain experts. In Study 1, clinicians were asked to provide an initial diagnosis (human), then view the AI's prediction, and subsequently finalize their decision (human-AI team). In Study 2 (after a memory wash-out period), the same participants first received aggregated performance statistics from Study 1, specifically their own performance, the AI's performance, and their human-AI team performance, and then directly viewed the AI's prediction before making their diagnosis (i.e., no independent initial diagnosis). These two workflows represent realistic ways that clinical AI tools might be used in practice, where the second study simulates a scenario where doctors can adjust their reliance and trust on AI based on prior performance feedback. Our findings show that, while human-AI teams consistently outperform humans alone, they still underperform the AI due to under-reliance, similar to prior studies with crowdworkers. Providing clinicians with performance feedback did not significantly improve the performance of human-AI teams, although showing AI decisions in advance nudges people to follow AI more. Meanwhile, we observe that the ensemble of human-AI teams can outperform AI alone, suggesting promising directions for human-AI collaboration.


Modeling Empathetic Alignment in Conversation

arXiv.org Artificial Intelligence

Empathy requires perspective-taking: empathetic responses require a person to reason about what another has experienced and communicate that understanding in language. However, most NLP approaches to empathy do not explicitly model this alignment process. Here, we introduce a new approach to recognizing alignment in empathetic speech, grounded in Appraisal Theory. We introduce a new dataset of over 9.2K span-level annotations of different types of appraisals of a person's experience and over 3K empathetic alignments between a speaker's and observer's speech. Through computational experiments, we show that these appraisals and alignments can be accurately recognized. In experiments in over 9.2M Reddit conversations, we find that appraisals capture meaningful groupings of behavior but that most responses have minimal alignment. However, we find that mental health professionals engage with substantially more empathetic alignment.


Prediction of Cellular Identities from Trajectory and Cell Fate Information

arXiv.org Artificial Intelligence

Determining cell identities in imaging sequences is an important yet challenging task. The conventional method for cell identification is via cell tracking, which is complex and can be time-consuming. In this study, we propose an innovative approach to cell identification during early C. elegans embryogenesis using machine learning. We employed random forest, MLP, and LSTM models, and tested cell classification accuracy on 3D time-lapse confocal datasets spanning the first 4 hours of embryogenesis. By leveraging a small number of spatial-temporal features of individual cells, including cell trajectory and cell fate information, our models achieve an accuracy of over 90%, even with limited data. We also determine the most important feature contributions and can interpret these features in the context of biological knowledge. Our research demonstrates the success of predicting cell identities in 4D imaging sequences directly from simple spatio-temporal features.