Yang, Jheng-Hong
Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard
Kamalloo, Ehsan, Thakur, Nandan, Lassance, Carlos, Ma, Xueguang, Yang, Jheng-Hong, Lin, Jimmy
BEIR is a benchmark dataset for zero-shot evaluation of information retrieval models across 18 different domain/task combinations. In recent years, we have witnessed the growing popularity of a representation learning approach to building retrieval models, typically using pretrained transformers in a supervised setting. This naturally begs the question: How effective are these models when presented with queries and documents that differ from the training data? Examples include searching in different domains (e.g., medical or legal text) and with different types of queries (e.g., keywords vs. well-formed questions). While BEIR was designed to answer these questions, our work addresses two shortcomings that prevent the benchmark from achieving its full potential: First, the sophistication of modern neural methods and the complexity of current software infrastructure create barriers to entry for newcomers. To this end, we provide reproducible reference implementations that cover the two main classes of approaches: learned dense and sparse models. Second, there does not exist a single authoritative nexus for reporting the effectiveness of different models on BEIR, which has led to difficulty in comparing different methods. To remedy this, we present an official self-service BEIR leaderboard that provides fair and consistent comparisons of retrieval models. By addressing both shortcomings, our work facilitates future explorations in a range of interesting research questions that BEIR enables.
AToMiC: An Image/Text Retrieval Test Collection to Support Multimedia Content Creation
Yang, Jheng-Hong, Lassance, Carlos, de Rezende, Rafael Sampaio, Srinivasan, Krishna, Redi, Miriam, Clinchant, Stรฉphane, Lin, Jimmy
This paper presents the AToMiC (Authoring Tools for Multimedia Content) dataset, designed to advance research in image/text cross-modal retrieval. While vision-language pretrained transformers have led to significant improvements in retrieval effectiveness, existing research has relied on image-caption datasets that feature only simplistic image-text relationships and underspecified user models of retrieval tasks. To address the gap between these oversimplified settings and real-world applications for multimedia content creation, we introduce a new approach for building retrieval test collections. We leverage hierarchical structures and diverse domains of texts, styles, and types of images, as well as large-scale image-document associations embedded in Wikipedia. We formulate two tasks based on a realistic user model and validate our dataset through retrieval experiments using baseline models. AToMiC offers a testbed for scalable, diverse, and reproducible multimedia retrieval research. Finally, the dataset provides the basis for a dedicated track at the 2023 Text Retrieval Conference (TREC), and is publicly available at https://github.com/TREC-AToMiC/AToMiC.
Simple Yet Effective Neural Ranking and Reranking Baselines for Cross-Lingual Information Retrieval
Lin, Jimmy, Alfonso-Hermelo, David, Jeronymo, Vitor, Kamalloo, Ehsan, Lassance, Carlos, Nogueira, Rodrigo, Ogundepo, Odunayo, Rezagholizadeh, Mehdi, Thakur, Nandan, Yang, Jheng-Hong, Zhang, Xinyu
The advent of multilingual language models has generated a resurgence of interest in cross-lingual information retrieval (CLIR), which is the task of searching documents in one language with queries from another. However, the rapid pace of progress has led to a confusing panoply of methods and reproducibility has lagged behind the state of the art. In this context, our work makes two important contributions: First, we provide a conceptual framework for organizing different approaches to cross-lingual retrieval using multi-stage architectures for mono-lingual retrieval as a scaffold. Second, we implement simple yet effective reproducible baselines in the Anserini and Pyserini IR toolkits for test collections from the TREC 2022 NeuCLIR Track, in Persian, Russian, and Chinese. Our efforts are built on a collaboration of the two teams that submitted the most effective runs to the TREC evaluation. These contributions provide a firm foundation for future advances.
Query Reformulation using Query History for Passage Retrieval in Conversational Search
Lin, Sheng-Chieh, Yang, Jheng-Hong, Nogueira, Rodrigo, Tsai, Ming-Feng, Wang, Chuan-Ju, Lin, Jimmy
Passage retrieval in a conversational context is essential for many downstream applications; it is however extremely challenging due to limited data resources. To address this problem, we present an effective multi-stage pipeline for passage ranking in conversational search that integrates a widely-used IR system with a conversational query reformulation module. Along these lines, we propose two simple yet effective query reformulation approaches: historical query expansion (HQE) and neural transfer reformulation (NTR). Whereas HQE applies query expansion, a traditional IR query reformulation technique, NTR transfers human knowledge of conversational query understanding to a neural query reformulation model. The proposed HQE method was the top-performing submission of automatic systems in CAsT Track at TREC 2019. Building on this, our NTR approach improves an additional 18% over that best entry in terms of NDCG@3. We further analyze the distinct behaviors of the two approaches, and show that fusing their output reduces the performance gap (measured in NDCG@3) between the manually-rewritten and automatically-generated queries to 4 from 22 points when compared with the best CAsT submission.