Goto

Collaborating Authors

 Yang, Huiyun


FOAL: Fine-grained Contrastive Learning for Cross-domain Aspect Sentiment Triplet Extraction

arXiv.org Artificial Intelligence

Aspect Sentiment Triplet Extraction (ASTE) has achieved promising results while relying on sufficient annotation data in a specific domain. However, it is infeasible to annotate data for each individual domain. We propose to explore ASTE in the cross-domain setting, which transfers knowledge from a resource-rich source domain to a resource-poor target domain, thereby alleviating the reliance on labeled data in the target domain. To effectively transfer the knowledge across domains and extract the sentiment triplets accurately, we propose a method named Fine-grained cOntrAstive Learning (FOAL) to reduce the domain discrepancy and preserve the discriminability of each category. Experiments on six transfer pairs show that FOAL achieves 6% performance gains and reduces the domain discrepancy significantly compared with strong baselines. Our code will be publicly available once accepted.


Measuring Your ASTE Models in The Wild: A Diversified Multi-domain Dataset For Aspect Sentiment Triplet Extraction

arXiv.org Artificial Intelligence

Aspect Sentiment Triplet Extraction (ASTE) is widely used in various applications. However, existing ASTE datasets are limited in their ability to represent real-world scenarios, hindering the advancement of research in this area. In this paper, we introduce a new dataset, named DMASTE, which is manually annotated to better fit real-world scenarios by providing more diverse and realistic reviews for the task. The dataset includes various lengths, diverse expressions, more aspect types, and more domains than existing datasets. We conduct extensive experiments on DMASTE in multiple settings to evaluate previous ASTE approaches. Empirical results demonstrate that DMASTE is a more challenging ASTE dataset. Further analyses of in-domain and cross-domain settings provide promising directions for future research. Our code and dataset are available at https://github.com/NJUNLP/DMASTE.