Yang, Huan
KVShare: Semantic-Aware Key-Value Cache Sharing for Efficient Large Language Model Inference
Yang, Huan, Zhang, Renji, Zhang, Deyu
This paper presents KVShare, a multi-user Key-Value (KV) Cache sharing technology based on semantic similarity, designed to enhance the inference efficiency of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs). Addressing the limitations of existing prefix caching (strict text prefix matching) and semantic caching (loss of response diversity), KVShare achieves fine-grained KV cache reuse through semantic alignment algorithms and differential editing operations. Experiments on real-world user conversation datasets demonstrate that KVShare improves KV cache hit rates by over 60%, while maintaining output quality comparable to full computation (no significant degradation in BLEU and Rouge-L metrics). This approach effectively reduces GPU resource consumption and is applicable to scenarios with repetitive queries, such as healthcare and education.
Long Video Diffusion Generation with Segmented Cross-Attention and Content-Rich Video Data Curation
Yan, Xin, Cai, Yuxuan, Wang, Qiuyue, Zhou, Yuan, Huang, Wenhao, Yang, Huan
We introduce Presto, a novel video diffusion model designed to generate 15-second videos with long-range coherence and rich content. Extending video generation methods to maintain scenario diversity over long durations presents significant challenges. To address this, we propose a Segmented Cross-Attention (SCA) strategy, which splits hidden states into segments along the temporal dimension, allowing each segment to cross-attend to a corresponding sub-caption. SCA requires no additional parameters, enabling seamless incorporation into current DiT-based architectures. To facilitate high-quality long video generation, we build the LongTake-HD dataset, consisting of 261k content-rich videos with scenario coherence, annotated with an overall video caption and five progressive sub-captions. Experiments show that our Presto achieves 78.5% on the VBench Semantic Score and 100% on the Dynamic Degree, outperforming existing state-of-the-art video generation methods. This demonstrates that our proposed Presto significantly enhances content richness, maintains long-range coherence, and captures intricate textual details. More details are displayed on our project page: https://presto-video.github.io/.
Fleximo: Towards Flexible Text-to-Human Motion Video Generation
Zhang, Yuhang, Zhou, Yuan, Liu, Zeyu, Cai, Yuxuan, Wang, Qiuyue, Men, Aidong, Yang, Huan
Current methods for generating human motion videos rely on extracting pose sequences from reference videos, which restricts flexibility and control. Additionally, due to the limitations of pose detection techniques, the extracted pose sequences can sometimes be inaccurate, leading to low-quality video outputs. We introduce a novel task aimed at generating human motion videos solely from reference images and natural language. This approach offers greater flexibility and ease of use, as text is more accessible than the desired guidance videos. However, training an end-to-end model for this task requires millions of high-quality text and human motion video pairs, which are challenging to obtain. To address this, we propose a new framework called Fleximo, which leverages large-scale pre-trained text-to-3D motion models. This approach is not straightforward, as the text-generated skeletons may not consistently match the scale of the reference image and may lack detailed information. To overcome these challenges, we introduce an anchor point based rescale method and design a skeleton adapter to fill in missing details and bridge the gap between text-to-motion and motion-to-video generation. We also propose a video refinement process to further enhance video quality. A large language model (LLM) is employed to decompose natural language into discrete motion sequences, enabling the generation of motion videos of any desired length. To assess the performance of Fleximo, we introduce a new benchmark called MotionBench, which includes 400 videos across 20 identities and 20 motions. We also propose a new metric, MotionScore, to evaluate the accuracy of motion following. Both qualitative and quantitative results demonstrate that our method outperforms existing text-conditioned image-to-video generation methods. All code and model weights will be made publicly available.
DreamStory: Open-Domain Story Visualization by LLM-Guided Multi-Subject Consistent Diffusion
He, Huiguo, Yang, Huan, Tuo, Zixi, Zhou, Yuan, Wang, Qiuyue, Zhang, Yuhang, Liu, Zeyu, Huang, Wenhao, Chao, Hongyang, Yin, Jian
Story visualization aims to create visually compelling images or videos corresponding to textual narratives. Despite recent advances in diffusion models yielding promising results, existing methods still struggle to create a coherent sequence of subject-consistent frames based solely on a story. To this end, we propose DreamStory, an automatic open-domain story visualization framework by leveraging the LLMs and a novel multi-subject consistent diffusion model. DreamStory consists of (1) an LLM acting as a story director and (2) an innovative Multi-Subject consistent Diffusion model (MSD) for generating consistent multi-subject across the images. First, DreamStory employs the LLM to generate descriptive prompts for subjects and scenes aligned with the story, annotating each scene's subjects for subsequent subject-consistent generation. Second, DreamStory utilizes these detailed subject descriptions to create portraits of the subjects, with these portraits and their corresponding textual information serving as multimodal anchors (guidance). Finally, the MSD uses these multimodal anchors to generate story scenes with consistent multi-subject. Specifically, the MSD includes Masked Mutual Self-Attention (MMSA) and Masked Mutual Cross-Attention (MMCA) modules. MMSA and MMCA modules ensure appearance and semantic consistency with reference images and text, respectively. Both modules employ masking mechanisms to prevent subject blending. To validate our approach and promote progress in story visualization, we established a benchmark, DS-500, which can assess the overall performance of the story visualization framework, subject-identification accuracy, and the consistency of the generation model. Extensive experiments validate the effectiveness of DreamStory in both subjective and objective evaluations. Please visit our project homepage at https://dream-xyz.github.io/dreamstory.
MAP-Neo: Highly Capable and Transparent Bilingual Large Language Model Series
Zhang, Ge, Qu, Scott, Liu, Jiaheng, Zhang, Chenchen, Lin, Chenghua, Yu, Chou Leuang, Pan, Danny, Cheng, Esther, Liu, Jie, Lin, Qunshu, Yuan, Raven, Zheng, Tuney, Pang, Wei, Du, Xinrun, Liang, Yiming, Ma, Yinghao, Li, Yizhi, Ma, Ziyang, Lin, Bill, Benetos, Emmanouil, Yang, Huan, Zhou, Junting, Ma, Kaijing, Liu, Minghao, Niu, Morry, Wang, Noah, Que, Quehry, Liu, Ruibo, Liu, Sine, Guo, Shawn, Gao, Soren, Zhou, Wangchunshu, Zhang, Xinyue, Zhou, Yizhi, Wang, Yubo, Bai, Yuelin, Zhang, Yuhan, Zhang, Yuxiang, Wang, Zenith, Yang, Zhenzhu, Zhao, Zijian, Zhang, Jiajun, Ouyang, Wanli, Huang, Wenhao, Chen, Wenhu
Large Language Models (LLMs) have made great strides in recent years to achieve unprecedented performance across different tasks. However, due to commercial interest, the most competitive models like GPT, Gemini, and Claude have been gated behind proprietary interfaces without disclosing the training details. Recently, many institutions have open-sourced several strong LLMs like LLaMA-3, comparable to existing closed-source LLMs. However, only the model's weights are provided with most details (e.g., intermediate checkpoints, pre-training corpus, and training code, etc.) being undisclosed. To improve the transparency of LLMs, the research community has formed to open-source truly open LLMs (e.g., Pythia, Amber, OLMo), where more details (e.g., pre-training corpus and training code) are being provided. These models have greatly advanced the scientific study of these large models including their strengths, weaknesses, biases and risks. However, we observe that the existing truly open LLMs on reasoning, knowledge, and coding tasks are still inferior to existing state-of-the-art LLMs with similar model sizes. To this end, we open-source MAP-Neo, a highly capable and transparent bilingual language model with 7B parameters trained from scratch on 4.5T high-quality tokens. Our MAP-Neo is the first fully open-sourced bilingual LLM with comparable performance compared to existing state-of-the-art LLMs. Moreover, we open-source all details to reproduce our MAP-Neo, where the cleaned pre-training corpus, data cleaning pipeline, checkpoints, and well-optimized training/evaluation framework are provided. Finally, we hope our MAP-Neo will enhance and strengthen the open research community and inspire more innovations and creativities to facilitate the further improvements of LLMs.
Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution
Ma, Yiyang, Yang, Huan, Yang, Wenhan, Fu, Jianlong, Liu, Jiaying
Diffusion models, as a kind of powerful generative model, have given impressive results on image super-resolution (SR) tasks. However, due to the randomness introduced in the reverse process of diffusion models, the performances of diffusion-based SR models are fluctuating at every time of sampling, especially for samplers with few resampled steps. This inherent randomness of diffusion models results in ineffectiveness and instability, making it challenging for users to guarantee the quality of SR results. However, our work takes this randomness as an opportunity: fully analyzing and leveraging it leads to the construction of an effective plug-and-play sampling method that owns the potential to benefit a series of diffusion-based SR methods. More in detail, we propose to steadily sample high-quality SR images from pre-trained diffusion-based SR models by solving diffusion ordinary differential equations (diffusion ODEs) with optimal boundary conditions (BCs) and analyze the characteristics between the choices of BCs and their corresponding SR results. Our analysis shows the route to obtain an approximately optimal BC via an efficient exploration in the whole space. The quality of SR results sampled by the proposed method with fewer steps outperforms the quality of results sampled by current methods with randomness from the same pre-trained diffusion-based SR model, which means that our sampling method "boosts" current diffusion-based SR models without any additional training.
Incentivizing Massive Unknown Workers for Budget-Limited Crowdsensing: From Off-Line and On-Line Perspectives
Li, Feng, Chai, Yuqi, Yang, Huan, Hu, Pengfei, Duan, Lingjie
How to incentivize strategic workers using limited budget is a very fundamental problem for crowdsensing systems; nevertheless, since the sensing abilities of the workers may not always be known as prior knowledge due to the diversities of their sensor devices and behaviors, it is difficult to properly select and pay the unknown workers. Although the uncertainties of the workers can be addressed by the standard Combinatorial Multi-Armed Bandit (CMAB) framework in existing proposals through a trade-off between exploration and exploitation, we may not have sufficient budget to enable the trade-off among the individual workers, especially when the number of the workers is huge while the budget is limited. Moreover, the standard CMAB usually assumes the workers always stay in the system, whereas the workers may join in or depart from the system over time, such that what we have learnt for an individual worker cannot be applied after the worker leaves. To address the above challenging issues, in this paper, we first propose an off-line Context-Aware CMAB-based Incentive (CACI) mechanism. We innovate in leveraging the exploration-exploitation trade-off in an elaborately partitioned context space instead of the individual workers, to effectively incentivize the massive unknown workers with a very limited budget. We also extend the above basic idea to the on-line setting where unknown workers may join in or depart from the systems dynamically, and propose an on-line version of the CACI mechanism. We perform rigorous theoretical analysis to reveal the upper bounds on the regrets of our CACI mechanisms and to prove their truthfulness and individual rationality, respectively. Extensive experiments on both synthetic and real datasets are also conducted to verify the efficacy of our mechanisms.
Collaborative Learning in General Graphs with Limited Memorization: Complexity, Learnability, and Reliability
Li, Feng, Yuan, Xuyang, Wang, Lina, Yang, Huan, Yu, Dongxiao, Lv, Weifeng, Cheng, Xiuzhen
We consider a K-armed bandit problem in general graphs where agents are arbitrarily connected and each of them has limited memorizing capabilities and communication bandwidth. The goal is to let each of the agents eventually learn the best arm. It is assumed in these studies that the communication graph should be complete or well-structured, whereas such an assumption is not always valid in practice. Furthermore, limited memorization and communication bandwidth also restrict the collaborations of the agents, since the agents memorize and communicate very few experiences. Additionally, an agent may be corrupted to share falsified experiences to its peers, while the resource limit in terms of memorization and communication may considerably restrict the reliability of the learning process. To address the above issues, we propose a three-staged collaborative learning algorithm. In each step, the agents share their latest experiences with each other through light-weight random walks in a general communication graph, and then make decisions on which arms to pull according to the recommendations received from their peers. The agents finally update their adoptions (i.e., preferences to the arms) based on the reward obtained by pulling the arms. Our theoretical analysis shows that, when there are a sufficient number of agents participating in the collaborative learning process, all the agents eventually learn the best arm with high probability, even with limited memorizing capabilities and light-weight communications. We also reveal in our theoretical analysis the upper bound on the number of corrupted agents our algorithm can tolerate. The efficacy of our proposed three-staged collaborative learning algorithm is finally verified by extensive experiments on both synthetic and real datasets.
NUWA-XL: Diffusion over Diffusion for eXtremely Long Video Generation
Yin, Shengming, Wu, Chenfei, Yang, Huan, Wang, Jianfeng, Wang, Xiaodong, Ni, Minheng, Yang, Zhengyuan, Li, Linjie, Liu, Shuguang, Yang, Fan, Fu, Jianlong, Ming, Gong, Wang, Lijuan, Liu, Zicheng, Li, Houqiang, Duan, Nan
In this paper, we propose NUWA-XL, a novel Diffusion over Diffusion architecture for eXtremely Long video generation. Most current work generates long videos segment by segment sequentially, which normally leads to the gap between training on short videos and inferring long videos, and the sequential generation is inefficient. Instead, our approach adopts a ``coarse-to-fine'' process, in which the video can be generated in parallel at the same granularity. A global diffusion model is applied to generate the keyframes across the entire time range, and then local diffusion models recursively fill in the content between nearby frames. This simple yet effective strategy allows us to directly train on long videos (3376 frames) to reduce the training-inference gap, and makes it possible to generate all segments in parallel. To evaluate our model, we build FlintstonesHD dataset, a new benchmark for long video generation. Experiments show that our model not only generates high-quality long videos with both global and local coherence, but also decreases the average inference time from 7.55min to 26s (by 94.26\%) at the same hardware setting when generating 1024 frames. The homepage link is \url{https://msra-nuwa.azurewebsites.net/}
Learning Spatiotemporal Frequency-Transformer for Low-Quality Video Super-Resolution
Qiu, Zhongwei, Yang, Huan, Fu, Jianlong, Liu, Daochang, Xu, Chang, Fu, Dongmei
Abstract--Video Super-Resolution (VSR) aims to restore high-resolution (HR) videos from low-resolution (LR) videos. Existing VSR techniques usually recover HR frames by extracting pertinent textures from nearby frames with known degradation processes. Despite significant progress, grand challenges are remained to effectively extract and transmit high-quality textures from high-degraded low-quality sequences, such as blur, additive noises, and compression artifacts. In this work, a novel Frequency-Transformer (FTVSR) is proposed for handling low-quality videos that carry out self-attention in a combined space-time-frequency domain. First, video frames are split into patches and each patch is transformed into spectral maps in which each channel represents a frequency band. It permits a fine-grained self-attention on each frequency band, so that real visual texture can be distinguished from artifacts. Second, a novel dual frequency attention (DFA) mechanism is proposed to capture the global frequency relations and local frequency relations, which can handle different complicated degradation processes in real-world scenarios. Third, we explore different self-attention schemes for video processing in the frequency domain and discover that a "divided attention" which conducts a joint space-frequency attention before applying temporal-frequency attention, leads to the best video enhancement quality. Extensive experiments on three widely-used VSR datasets show that FTVSR outperforms state-of-the-art methods on different low-quality videos with clear visual margins.