Plotting

 Yang, Hu


Sparse Optimization for Transfer Learning: A L0-Regularized Framework for Multi-Source Domain Adaptation

arXiv.org Machine Learning

This paper explores transfer learning in heterogeneous multi-source environments with distributional divergence between target and auxiliary domains. To address challenges in statistical bias and computational efficiency, we propose a Sparse Optimization for Transfer Learning (SOTL) framework based on L0-regularization. The method extends the Joint Estimation Transferred from Strata (JETS) paradigm with two key innovations: (1) L0-constrained exact sparsity for parameter space compression and complexity reduction, and (2) refining optimization focus to emphasize target parameters over redundant ones. Simulations show that SOTL significantly improves both estimation accuracy and computational speed, especially under adversarial auxiliary domain conditions. Empirical validation on the Community and Crime benchmarks demonstrates the statistical robustness of the SOTL method in cross-domain transfer.


DeepVARMA: A Hybrid Deep Learning and VARMA Model for Chemical Industry Index Forecasting

arXiv.org Machine Learning

Since the chemical industry index is one of the important indicators to measure the development of the chemical industry, forecasting it is critical for understanding the economic situation and trends of the industry. Taking the multivariable nonstationary series-synthetic material index as the main research object, this paper proposes a new prediction model: DeepVARMA, and its variants Deep-VARMA-re and DeepVARMA-en, which combine LSTM and VARMAX models. The new model firstly uses the deep learning model such as the LSTM remove the trends of the target time series and also learn the representation of endogenous variables, and then uses the VARMAX model to predict the detrended target time series with the embeddings of endogenous variables, and finally combines the trend learned by the LSTM and dependency learned by the VARMAX model to obtain the final predictive values. The experimental results show that (1) the new model achieves the best prediction accuracy by combining the LSTM encoding of the exogenous variables and the VARMAX model. (2) In multivariate non-stationary series prediction, DeepVARMA uses a phased processing strategy to show higher adaptability and accuracy compared to the traditional VARMA model as well as the machine learning models LSTM, RF and XGBoost. (3) Compared with smooth sequence prediction, the traditional VARMA and VARMAX models fluctuate more in predicting non-smooth sequences, while DeepVARMA shows more flexibility and robustness. This study provides more accurate tools and methods for future development and scientific decision-making in the chemical industry.


UPainting: Unified Text-to-Image Diffusion Generation with Cross-modal Guidance

arXiv.org Artificial Intelligence

Diffusion generative models have recently greatly improved the power of text-conditioned image generation. Existing image generation models mainly include text conditional diffusion model and cross-modal guided diffusion model, which are good at small scene image generation and complex scene image generation respectively. In this work, we propose a simple yet effective approach, namely UPainting, to unify simple and complex scene image generation, as shown in Figure 1. Based on architecture improvements and diverse guidance schedules, UPainting effectively integrates cross-modal guidance from a pretrained image-text matching model into a text conditional diffusion model that utilizes a pretrained Transformer language model as the text encoder. Our key findings is that combining the power of large-scale Transformer language model in understanding language and image-text matching model in capturing cross-modal semantics and style, is effective to improve sample fidelity and image-text alignment of image generation. In this way, UPainting has a more general image generation capability, which can generate images of both simple and complex scenes more effectively. To comprehensively compare text-to-image models, we further create a more general benchmark, UniBench, with well-written Chinese and English prompts in both simple and complex scenes. We compare UPainting with recent models and find that UPainting greatly outperforms other models in terms of caption similarity and image fidelity in both simple and complex scenes. UPainting project page \url{https://upainting.github.io/}.