Yang, Haochen
Sample-Efficient Reinforcement Learning from Human Feedback via Information-Directed Sampling
Qi, Han, Yang, Haochen, Zhang, Qiaosheng, Yang, Zhuoran
We study the problem of reinforcement learning from human feedback (RLHF), a critical problem in training large language models, from a theoretical perspective. Our main contribution is the design of novel sample-efficient RLHF algorithms based on information-directed sampling (IDS), an online decision-making principle inspired by information theory. Our algorithms maximize the sum of the value function and a mutual information term that encourages exploration of the unknown environment (which quantifies the information gained about the environment through observed human feedback data). To tackle the challenge of large state spaces and improve sample efficiency, we construct a simplified \emph{surrogate environment} and introduce a novel distance measure (named the \emph{$\ell_g$-distance}), enabling our IDS-based algorithm to achieve a Bayesian regret upper bound of order $O(H^{\frac{3}{2}}\sqrt{\log(K(\epsilon)) T})$, where $H$ is the episode length, $T$ is the number of episode and $K(\epsilon)$ is related to the covering number of the environment. Specializing to the tabular settings, this regret bound is of order $\tilde{O}(H^2\sqrt{SAT})$, where $S$ and $A$ are the numbers of states and actions. Finally, we propose an Approximate-IDS algorithm that is computationally more efficient while maintaining nearly the same sample efficiency. The design principle of this approximate algorithm is not only effective in RLHF settings but also applicable to the standard RL framework. Moreover, our work showcases the value of information theory in reinforcement learning and in the training of large language models.
Calibrating and Improving Graph Contrastive Learning
Ma, Kaili, Yang, Haochen, Yang, Han, Chen, Yongqiang, Cheng, James
Graph contrastive learning algorithms have demonstrated remarkable success in various applications such as node classification, link prediction, and graph clustering. However, in unsupervised graph contrastive learning, some contrastive pairs may contradict the truths in downstream tasks and thus the decrease of losses on these pairs undesirably harms the performance in the downstream tasks. To assess the discrepancy between the prediction and the ground-truth in the downstream tasks for these contrastive pairs, we adapt the expected calibration error (ECE) to graph contrastive learning. The analysis of ECE motivates us to propose a novel regularization method, Contrast-Reg, to ensure that decreasing the contrastive loss leads to better performance in the downstream tasks. As a plug-in regularizer, Contrast-Reg effectively improves the performance of existing graph contrastive learning algorithms. We provide both theoretical and empirical results to demonstrate the effectiveness of Contrast-Reg in enhancing the generalizability of the Graph Neural Network(GNN) model and improving the performance of graph contrastive algorithms with different similarity definitions and encoder backbones across various downstream tasks.
Human or Machine? Turing Tests for Vision and Language
Zhang, Mengmi, Dellaferrera, Giorgia, Sikarwar, Ankur, Armendariz, Marcelo, Mudrik, Noga, Agrawal, Prachi, Madan, Spandan, Barbu, Andrei, Yang, Haochen, Kumar, Tanishq, Sadwani, Meghna, Dellaferrera, Stella, Pizzochero, Michele, Pfister, Hanspeter, Kreiman, Gabriel
As AI algorithms increasingly participate in daily activities that used to be the sole province of humans, we are inevitably called upon to consider how much machines are really like us. To address this question, we turn to the Turing test and systematically benchmark current AIs in their abilities to imitate humans. We establish a methodology to evaluate humans versus machines in Turing-like tests and systematically evaluate a representative set of selected domains, parameters, and variables. The experiments involved testing 769 human agents, 24 state-of-the-art AI agents, 896 human judges, and 8 AI judges, in 21,570 Turing tests across 6 tasks encompassing vision and language modalities. Surprisingly, the results reveal that current AIs are not far from being able to impersonate human judges across different ages, genders, and educational levels in complex visual and language challenges. In contrast, simple AI judges outperform human judges in distinguishing human answers versus machine answers. The curated large-scale Turing test datasets introduced here and their evaluation metrics provide valuable insights to assess whether an agent is human or not. The proposed formulation to benchmark human imitation ability in current AIs paves a way for the research community to expand Turing tests to other research areas and conditions. All of source code and data are publicly available at https://tinyurl.com/8x8nha7p