Yang, Hanchen
Towards Efficient Neuro-Symbolic AI: From Workload Characterization to Hardware Architecture
Wan, Zishen, Liu, Che-Kai, Yang, Hanchen, Raj, Ritik, Li, Chaojian, You, Haoran, Fu, Yonggan, Wan, Cheng, Li, Sixu, Kim, Youbin, Samajdar, Ananda, Lin, Yingyan Celine, Ibrahim, Mohamed, Rabaey, Jan M., Krishna, Tushar, Raychowdhury, Arijit
The remarkable advancements in artificial intelligence (AI), primarily driven by deep neural networks, are facing challenges surrounding unsustainable computational trajectories, limited robustness, and a lack of explainability. To develop next-generation cognitive AI systems, neuro-symbolic AI emerges as a promising paradigm, fusing neural and symbolic approaches to enhance interpretability, robustness, and trustworthiness, while facilitating learning from much less data. Recent neuro-symbolic systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities. In this paper, we aim to understand the workload characteristics and potential architectures for neuro-symbolic AI. We first systematically categorize neuro-symbolic AI algorithms, and then experimentally evaluate and analyze them in terms of runtime, memory, computational operators, sparsity, and system characteristics on CPUs, GPUs, and edge SoCs. Our studies reveal that neuro-symbolic models suffer from inefficiencies on off-the-shelf hardware, due to the memory-bound nature of vector-symbolic and logical operations, complex flow control, data dependencies, sparsity variations, and limited scalability. Based on profiling insights, we suggest cross-layer optimization solutions and present a hardware acceleration case study for vector-symbolic architecture to improve the performance, efficiency, and scalability of neuro-symbolic computing. Finally, we discuss the challenges and potential future directions of neuro-symbolic AI from both system and architectural perspectives.
Inductive Spatial Temporal Prediction Under Data Drift with Informative Graph Neural Network
Zheng, Jialun, Saxena, Divya, Cao, Jiannong, Yang, Hanchen, Ruan, Penghui
Inductive spatial temporal prediction can generalize historical data to predict unseen data, crucial for highly dynamic scenarios (e.g., traffic systems, stock markets). However, external events (e.g., urban structural growth, market crash) and emerging new entities (e.g., locations, stocks) can undermine prediction accuracy by inducing data drift over time. Most existing studies extract invariant patterns to counter data drift but ignore pattern diversity, exhibiting poor generalization to unseen entities. To address this issue, we design an Informative Graph Neural Network (INF-GNN) to distill diversified invariant patterns and improve prediction accuracy under data drift. Firstly, we build an informative subgraph with a uniquely designed metric, Relation Importance (RI), that can effectively select stable entities and distinct spatial relationships. This subgraph further generalizes new entities' data via neighbors merging. Secondly, we propose an informative temporal memory buffer to help the model emphasize valuable timestamps extracted using influence functions within time intervals. This memory buffer allows INF-GNN to discern influential temporal patterns. Finally, RI loss optimization is designed for pattern consolidation. Extensive experiments on real-world dataset under substantial data drift demonstrate that INF-GNN significantly outperforms existing alternatives.
CausalFormer: An Interpretable Transformer for Temporal Causal Discovery
Kong, Lingbai, Li, Wengen, Yang, Hanchen, Zhang, Yichao, Guan, Jihong, Zhou, Shuigeng
Temporal causal discovery is a crucial task aimed at uncovering the causal relations within time series data. The latest temporal causal discovery methods usually train deep learning models on prediction tasks to uncover the causality between time series. They capture causal relations by analyzing the parameters of some components of the trained models, e.g., attention weights and convolution weights. However, this is an incomplete mapping process from the model parameters to the causality and fails to investigate the other components, e.g., fully connected layers and activation functions, that are also significant for causal discovery. To facilitate the utilization of the whole deep learning models in temporal causal discovery, we proposed an interpretable transformer-based causal discovery model termed CausalFormer, which consists of the causality-aware transformer and the decomposition-based causality detector. The causality-aware transformer learns the causal representation of time series data using a prediction task with the designed multi-kernel causal convolution which aggregates each input time series along the temporal dimension under the temporal priority constraint. Then, the decomposition-based causality detector interprets the global structure of the trained causality-aware transformer with the proposed regression relevance propagation to identify potential causal relations and finally construct the causal graph. Experiments on synthetic, simulated, and real datasets demonstrate the state-of-the-art performance of CausalFormer on discovering temporal causality. Our code is available at https://github.com/lingbai-kong/CausalFormer.
H3DFact: Heterogeneous 3D Integrated CIM for Factorization with Holographic Perceptual Representations
Wan, Zishen, Liu, Che-Kai, Ibrahim, Mohamed, Yang, Hanchen, Spetalnick, Samuel, Krishna, Tushar, Raychowdhury, Arijit
Disentangling attributes of various sensory signals is central to human-like perception and reasoning and a critical task for higher-order cognitive and neuro-symbolic AI systems. An elegant approach to represent this intricate factorization is via high-dimensional holographic vectors drawing on brain-inspired vector symbolic architectures. However, holographic factorization involves iterative computation with high-dimensional matrix-vector multiplications and suffers from non-convergence problems. In this paper, we present H3DFact, a heterogeneous 3D integrated in-memory compute engine capable of efficiently factorizing high-dimensional holographic representations. H3DFact exploits the computation-in-superposition capability of holographic vectors and the intrinsic stochasticity associated with memristive-based 3D compute-in-memory. Evaluated on large-scale factorization and perceptual problems, H3DFact demonstrates superior capability in factorization accuracy and operational capacity by up to five orders of magnitude, with 5.5x compute density, 1.2x energy efficiency improvements, and 5.9x less silicon footprint compared to iso-capacity 2D designs.
Towards Cognitive AI Systems: a Survey and Prospective on Neuro-Symbolic AI
Wan, Zishen, Liu, Che-Kai, Yang, Hanchen, Li, Chaojian, You, Haoran, Fu, Yonggan, Wan, Cheng, Krishna, Tushar, Lin, Yingyan, Raychowdhury, Arijit
The remarkable advancements in artificial intelligence (AI), primarily driven by deep neural networks, have significantly impacted various aspects of our lives. However, the current challenges surrounding unsustainable computational trajectories, limited robustness, and a lack of explainability call for the development of next-generation AI systems. Neuro-symbolic AI (NSAI) emerges as a promising paradigm, fusing neural, symbolic, and probabilistic approaches to enhance interpretability, robustness, and trustworthiness while facilitating learning from much less data. Recent NSAI systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities. In this paper, we provide a systematic review of recent progress in NSAI and analyze the performance characteristics and computational operators of NSAI models. Furthermore, we discuss the challenges and potential future directions of NSAI from both system and architectural perspectives.
Spatial-Temporal Data Mining for Ocean Science: Data, Methodologies, and Opportunities
Yang, Hanchen, Li, Wengen, Wang, Shuyu, Li, Hui, Guan, Jihong, Zhou, Shuigeng, Cao, Jiannong
With the rapid amassing of spatial-temporal (ST) ocean data, many spatial-temporal data mining (STDM) studies have been conducted to address various oceanic issues, including climate forecasting and disaster warning. Compared with typical ST data (e.g., traffic data), ST ocean data is more complicated but with unique characteristics, e.g., diverse regionality and high sparsity. These characteristics make it difficult to design and train STDM models on ST ocean data. To the best of our knowledge, a comprehensive survey of existing studies remains missing in the literature, which hinders not only computer scientists from identifying the research issues in ocean data mining but also ocean scientists to apply advanced STDM techniques. In this paper, we provide a comprehensive survey of existing STDM studies for ocean science. Concretely, we first review the widely-used ST ocean datasets and highlight their unique characteristics. Then, typical ST ocean data quality enhancement techniques are explored. Next, we classify existing STDM studies in ocean science into four types of tasks, i.e., prediction, event detection, pattern mining, and anomaly detection, and elaborate on the techniques for these tasks. Finally, promising research opportunities are discussed. This survey can help scientists from both computer science and ocean science better understand the fundamental concepts, key techniques, and open challenges of STDM for ocean science.