Yang, Gene-Ping
Towards Matching Phones and Speech Representations
Yang, Gene-Ping, Tang, Hao
Learning phone types from phone instances has been a long-standing problem, while still being open. In this work, we revisit this problem in the context of self-supervised learning, and pose it as the problem of matching cluster centroids to phone embeddings. We study two key properties that enable matching, namely, whether cluster centroids of self-supervised representations reduce the variability of phone instances and respect the relationship among phones. We then use the matching result to produce pseudo-labels and introduce a new loss function for improving self-supervised representations. Our experiments show that the matching result captures the relationship among phones. Training the new loss function jointly with the regular self-supervised losses, such as APC and CPC, significantly improves the downstream phone classification.
On-Device Constrained Self-Supervised Speech Representation Learning for Keyword Spotting via Knowledge Distillation
Yang, Gene-Ping, Gu, Yue, Tang, Qingming, Du, Dongsu, Liu, Yuzong
Large self-supervised models are effective feature extractors, but their application is challenging under on-device budget constraints and biased dataset collection, especially in keyword spotting. To address this, we proposed a knowledge distillation-based self-supervised speech representation learning (S3RL) architecture for on-device keyword spotting. Our approach used a teacher-student framework to transfer knowledge from a larger, more complex model to a smaller, light-weight model using dual-view cross-correlation distillation and the teacher's codebook as learning objectives. We evaluated our model's performance on an Alexa keyword spotting detection task using a 16.6k-hour in-house dataset. Our technique showed exceptional performance in normal and noisy conditions, demonstrating the efficacy of knowledge distillation methods in constructing self-supervised models for keyword spotting tasks while working within on-device resource constraints.
Improved Speech Separation with Time-and-Frequency Cross-domain Joint Embedding and Clustering
Yang, Gene-Ping, Tuan, Chao-I, Lee, Hung-Yi, Lee, Lin-shan
Speech separation has been very successful with deep learning techniques. Substantial effort has been reported based on approaches over spectrogram, which is well known as the standard time-and-frequency cross-domain representation for speech signals. It is highly correlated to the phonetic structure of speech, or "how the speech sounds" when perceived by human, but primarily frequency domain features carrying temporal behaviour. Very impressive work achieving speech separation over time domain was reported recently, probably because waveforms in time domain may describe the different realizations of speech in a more precise way than spectrogram. In this paper, we propose a framework properly integrating the above two directions, hoping to achieve both purposes. We construct a time-and-frequency feature map by concatenating the 1-dim convolution encoded feature map (for time domain) and the spectrogram (for frequency domain), which was then processed by an embedding network and clustering approaches very similar to those used in time and frequency domain prior works. In this way, the information in the time and frequency domains, as well as the interactions between them, can be jointly considered during embedding and clustering. Very encouraging results (state-of-the-art to our knowledge) were obtained with WSJ0-2mix dataset in preliminary experiments.