Yang, Funing
From Incomplete Coarse-Grained to Complete Fine-Grained: A Two-Stage Framework for Spatiotemporal Data Reconstruction
Sun, Ziyu, Su, Haoyang, Wang, En, Yang, Funing, Yang, Yongjian, Liu, Wenbin
With the rapid development of various sensing devices, spatiotemporal data is becoming increasingly important nowadays. However, due to sensing costs and privacy concerns, the collected data is often incomplete and coarse-grained, limiting its application to specific tasks. To address this, we propose a new task called spatiotemporal data reconstruction, which aims to infer complete and fine-grained data from sparse and coarse-grained observations. To achieve this, we introduce a two-stage data inference framework, DiffRecon, grounded in the Denoising Diffusion Probabilistic Model (DDPM). In the first stage, we present Diffusion-C, a diffusion model augmented by ST-PointFormer, a powerful encoder designed to leverage the spatial correlations between sparse data points. Following this, the second stage introduces Diffusion-F, which incorporates the proposed T-PatternNet to capture the temporal pattern within sequential data. Together, these two stages form an end-to-end framework capable of inferring complete, fine-grained data from incomplete and coarse-grained observations. We conducted experiments on multiple real-world datasets to demonstrate the superiority of our method.
TriMLP: Revenge of a MLP-like Architecture in Sequential Recommendation
Jiang, Yiheng, Xu, Yuanbo, Yang, Yongjian, Yang, Funing, Wang, Pengyang, Xiong, Hui
In this paper, we present a MLP-like architecture for sequential recommendation, namely TriMLP, with a novel Triangular Mixer for cross-token communications. In designing Triangular Mixer, we simplify the cross-token operation in MLP as the basic matrix multiplication, and drop the lower-triangle neurons of the weight matrix to block the anti-chronological order connections from future tokens. Accordingly, the information leakage issue can be remedied and the prediction capability of MLP can be fully excavated under the standard auto-regressive mode. Take a step further, the mixer serially alternates two delicate MLPs with triangular shape, tagged as global and local mixing, to separately capture the long range dependencies and local patterns on fine-grained level, i.e., long and short-term preferences. Empirical study on 12 datasets of different scales (50K\textasciitilde 10M user-item interactions) from 4 benchmarks (Amazon, MovieLens, Tenrec and LBSN) show that TriMLP consistently attains promising accuracy/efficiency trade-off, where the average performance boost against several state-of-the-art baselines achieves up to 14.88% with 8.65% less inference cost.