Yang, Dingqi
Harnessing Multiple Large Language Models: A Survey on LLM Ensemble
Chen, Zhijun, Li, Jingzheng, Chen, Pengpeng, Li, Zhuoran, Sun, Kai, Luo, Yuankai, Mao, Qianren, Yang, Dingqi, Sun, Hailong, Yu, Philip S.
LLM Ensemble--which involves the comprehensive use of multiple large language models (LLMs), each aimed at handling user queries during downstream inference, to benefit from their individual strengths--has gained substantial attention recently. The widespread availability of LLMs, coupled with their varying strengths and out-of-the-box usability, has profoundly advanced the field of LLM Ensemble. This paper presents the first systematic review of recent developments in LLM Ensemble. First, we introduce our taxonomy of LLM Ensemble and discuss several related research problems. Then, we provide a more in-depth classification of the methods under the broad categories of "ensemble-before-inference, ensemble-during-inference, ensemble-after-inference", and review all relevant methods. Finally, we introduce related benchmarks and applications, summarize existing studies, and suggest several future research directions. A curated list of papers on LLM Ensemble is available at https://github.com/junchenzhi/
On Your Mark, Get Set, Predict! Modeling Continuous-Time Dynamics of Cascades for Information Popularity Prediction
Jing, Xin, Jing, Yichen, Lu, Yuhuan, Deng, Bangchao, Yang, Sikun, Yang, Dingqi
Information popularity prediction is important yet challenging in various domains, including viral marketing and news recommendations. The key to accurately predicting information popularity lies in subtly modeling the underlying temporal information diffusion process behind observed events of an information cascade, such as the retweets of a tweet. To this end, most existing methods either adopt recurrent networks to capture the temporal dynamics from the first to the last observed event or develop a statistical model based on self-exciting point processes to make predictions. However, information diffusion is intrinsically a complex continuous-time process with irregularly observed discrete events, which is oversimplified using recurrent networks as they fail to capture the irregular time intervals between events, or using self-exciting point processes as they lack flexibility to capture the complex diffusion process. Against this background, we propose ConCat, modeling the Continuous-time dynamics of Cascades for information popularity prediction. On the one hand, it leverages neural Ordinary Differential Equations (ODEs) to model irregular events of a cascade in continuous time based on the cascade graph and sequential event information. On the other hand, it considers cascade events as neural temporal point processes (TPPs) parameterized by a conditional intensity function which can also benefit the popularity prediction task. We conduct extensive experiments to evaluate ConCat on three real-world datasets. Results show that ConCat achieves superior performance compared to state-of-the-art baselines, yielding a 2.3%-33.2% improvement over the best-performing baselines across the three datasets.
CasFT: Future Trend Modeling for Information Popularity Prediction with Dynamic Cues-Driven Diffusion Models
Jing, Xin, Jing, Yichen, Lu, Yuhuan, Deng, Bangchao, Chen, Xueqin, Yang, Dingqi
The rapid spread of diverse information on online social platforms has prompted both academia and industry to realize the importance of predicting content popularity, which could benefit a wide range of applications, such as recommendation systems and strategic decision-making. Recent works mainly focused on extracting spatiotemporal patterns inherent in the information diffusion process within a given observation period so as to predict its popularity over a future period of time. However, these works often overlook the future popularity trend, as future popularity could either increase exponentially or stagnate, introducing uncertainties to the prediction performance. Additionally, how to transfer the preceding-term dynamics learned from the observed diffusion process into future-term trends remains an unexplored challenge. Against this background, we propose CasFT, which leverages observed information Cascades and dynamic cues extracted via neural ODEs as conditions to guide the generation of Future popularity-increasing Trends through a diffusion model. These generated trends are then combined with the spatiotemporal patterns in the observed information cascade to make the final popularity prediction. Extensive experiments conducted on three real-world datasets demonstrate that CasFT significantly improves the prediction accuracy, compared to state-of-the-art approaches, yielding 2.2%-19.3% improvement across different datasets.
Revisiting Synthetic Human Trajectories: Imitative Generation and Benchmarks Beyond Datasaurus
Deng, Bangchao, Jing, Xin, Yang, Tianyue, Qu, Bingqing, Cudre-Mauroux, Philippe, Yang, Dingqi
Human trajectory data, which plays a crucial role in various applications such as crowd management and epidemic prevention, is challenging to obtain due to practical constraints and privacy concerns. In this context, synthetic human trajectory data is generated to simulate as close as possible to real-world human trajectories, often under summary statistics and distributional similarities. However, the complexity of human mobility patterns is oversimplified by these similarities (a.k.a. ``Datasaurus''), resulting in intrinsic biases in both generative model design and benchmarks of the generated trajectories. Against this background, we propose MIRAGE, a huMan-Imitative tRAjectory GenErative model designed as a neural Temporal Point Process integrating an Exploration and Preferential Return model. It imitates the human decision-making process in trajectory generation, rather than fitting any specific statistical distributions as traditional methods do, thus avoiding the Datasaurus issue. Moreover, we also propose a comprehensive task-based evaluation protocol beyond Datasaurus to systematically benchmark trajectory generative models on four typical downstream tasks, integrating multiple techniques and evaluation metrics for each task, to comprehensively assess the ultimate utility of the generated trajectories. We conduct a thorough evaluation of MIRAGE on three real-world user trajectory datasets against a sizeable collection of baselines. Results show that compared to the best baselines, MIRAGE-generated trajectory data not only achieves the best statistical and distributional similarities with 59.0-71.5% improvement, but also yields the best performance in the task-based evaluation with 10.9-33.4% improvement.
REPLAY: Modeling Time-Varying Temporal Regularities of Human Mobility for Location Prediction over Sparse Trajectories
Deng, Bangchao, Qu, Bingqing, Wang, Pengyang, Yang, Dingqi, Fankhauser, Benjamin, Cudre-Mauroux, Philippe
Location prediction forecasts a user's location based on historical user mobility traces. To tackle the intrinsic sparsity issue of real-world user mobility traces, spatiotemporal contexts have been shown as significantly useful. Existing solutions mostly incorporate spatiotemporal distances between locations in mobility traces, either by feeding them as additional inputs to Recurrent Neural Networks (RNNs) or by using them to search for informative past hidden states for prediction. However, such distance-based methods fail to capture the time-varying temporal regularities of human mobility, where human mobility is often more regular in the morning than in other periods, for example; this suggests the usefulness of the actual timestamps besides the temporal distances. Against this background, we propose REPLAY, a general RNN architecture learning to capture the time-varying temporal regularities for location prediction. Specifically, REPLAY not only resorts to the spatiotemporal distances in sparse trajectories to search for the informative past hidden states, but also accommodates the time-varying temporal regularities by incorporating smoothed timestamp embeddings using Gaussian weighted averaging with timestamp-specific learnable bandwidths, which can flexibly adapt to the temporal regularities of different strengths across different timestamps. Our extensive evaluation compares REPLAY against a sizable collection of state-of-the-art techniques on two real-world datasets. Results show that REPLAY consistently and significantly outperforms state-of-the-art methods by 7.7\%-10.9\% in the location prediction task, and the bandwidths reveal interesting patterns of the time-varying temporal regularities.
Spatial-Temporal Interplay in Human Mobility: A Hierarchical Reinforcement Learning Approach with Hypergraph Representation
Zhang, Zhaofan, Xiao, Yanan, Jiang, Lu, Yang, Dingqi, Yin, Minghao, Wang, Pengyang
In the realm of human mobility, the decision-making process for selecting the next-visit location is intricately influenced by a trade-off between spatial and temporal constraints, which are reflective of individual needs and preferences. This trade-off, however, varies across individuals, making the modeling of these spatial-temporal dynamics a formidable challenge. To address the problem, in this work, we introduce the "Spatial-temporal Induced Hierarchical Reinforcement Learning" (STI-HRL) framework, for capturing the interplay between spatial and temporal factors in human mobility decision-making. Specifically, STI-HRL employs a two-tiered decision-making process: the low-level focuses on disentangling spatial and temporal preferences using dedicated agents, while the high-level integrates these considerations to finalize the decision. To complement the hierarchical decision setting, we construct a hypergraph to organize historical data, encapsulating the multi-aspect semantics of human mobility. We propose a cross-channel hypergraph embedding module to learn the representations as the states to facilitate the decision-making cycle. Our extensive experiments on two real-world datasets validate the superiority of STI-HRL over state-of-the-art methods in predicting users' next visits across various performance metrics.
Geographic Differential Privacy for Mobile Crowd Coverage Maximization
Wang, Leye (The Hong Kong University of Science and Technology) | Qin, Gehua (Shanghai Jiao Tong University) | Yang, Dingqi (University of Fribourg) | Han, Xiao (Shanghai University of Finance and Economics) | Ma, Xiaojuan (The Hong Kong University of Science and Technology)
For real-world mobile applications such as location-based advertising and spatial crowdsourcing, a key to success is targeting mobile users that can maximally cover certain locations in a future period. To find an optimal group of users, existing methods often require information about users' mobility history, which may cause privacy breaches. In this paper, we propose a method to maximize mobile crowd's future location coverage under a guaranteed location privacy protection scheme. In our approach, users only need to upload one of their frequently visited locations, and more importantly, the uploaded location is obfuscated using a geographic differential privacy policy. We propose both analytic and practical solutions to this problem. Experiments on real user mobility datasets show that our method significantly outperforms the state-of-the-art geographic differential privacy methods by achieving a higher coverage under the same level of privacy protection.