Yang, Chuanguang
FedKD-hybrid: Federated Hybrid Knowledge Distillation for Lithography Hotspot Detection
Li, Yuqi, Lin, Xingyou, Zhang, Kai, Yang, Chuanguang, Guo, Zhongliang, Gou, Jianping, Li, Yanli
Federated Learning (FL) provides novel solutions for machine learning (ML)-based lithography hotspot detection (LHD) under distributed privacy-preserving settings. Currently, two research pipelines have been investigated to aggregate local models and achieve global consensus, including parameter/nonparameter based (also known as knowledge distillation, namely KD). While these two kinds of methods show effectiveness in specific scenarios, we note they have not fully utilized and transferred the information learned, leaving the potential of FL-based LDH remains unexplored. Thus, we propose FedKDhybrid in this study to mitigate the research gap. Specifically, FedKD-hybrid clients agree on several identical layers across all participants and a public dataset for achieving global consensus. During training, the trained local model will be evaluated on the public dataset, and the generated logits will be uploaded along with the identical layer parameters. The aggregated information is consequently used to update local models via the public dataset as a medium. We compare our proposed FedKD-hybrid with several state-of-the-art (SOTA) FL methods under ICCAD-2012 and FAB (real-world collected) datasets with different settings; the experimental results demonstrate the superior performance of the FedKD-hybrid algorithm. Our code is available at https://github.com/itsnotacie/NN-FedKD-hybrid
ECG-guided individual identification via PPG
Wei, Riling, Chen, Hanjie, Yao, Kelu, Yang, Chuanguang, Wang, Jun, Li, Chao
Photoplethsmography (PPG)-based individual identification aiming at recognizing humans via intrinsic cardiovascular activities has raised extensive attention due to its high security and resistance to mimicry. However, this kind of technology witnesses unpromising results due to the limitation of low information density. To this end, electrocardiogram (ECG) signals have been introduced as a novel modality to enhance the density of input information. Specifically, a novel cross-modal knowledge distillation framework is implemented to propagate discriminate knowledge from ECG modality to PPG modality without incurring additional computational demands at the inference phase. Furthermore, to ensure efficient knowledge propagation, Contrastive Language-Image Pre-training (CLIP)-based knowledge alignment and cross-knowledge assessment modules are proposed respectively. Comprehensive experiments are conducted and results show our framework outperforms the baseline model with the improvement of 2.8% and 3.0% in terms of overall accuracy on seen- and unseen individual recognitions.
SGLP: A Similarity Guided Fast Layer Partition Pruning for Compressing Large Deep Models
Li, Yuqi, Lu, Yao, Dong, Zeyu, Yang, Chuanguang, Chen, Yihao, Gou, Jianping
The deployment of Deep Neural Network (DNN)-based networks on resource-constrained devices remains a significant challenge due to their high computational and parameter requirements. To solve this problem, layer pruning has emerged as a potent approach to reduce network size and improve computational efficiency. However, existing layer pruning methods mostly overlook the intrinsic connections and inter-dependencies between different layers within complicated deep neural networks. This oversight can result in pruned models that do not preserve the essential characteristics of the pre-trained network as effectively as desired. To address this limitations, we propose a Similarity Guided fast Layer Partition pruning for compressing large deep models (SGLP), which focuses on pruning layers from network segments partitioned via representation similarity. Specifically, our presented method first leverages Centered Kernel Alignment (CKA) to indicate the internal representations among the layers of the pre-trained network, which provides us with a potent basis for layer pruning. Based on similarity matrix derived from CKA, we employ Fisher Optimal Segmentation to partition the network into multiple segments, which provides a basis for removing the layers in a segment-wise manner. In addition, our method innovatively adopts GradNorm for segment-wise layer importance evaluation, eliminating the need for extensive fine-tuning, and finally prunes the unimportant layers to obtain a compact network. Experimental results in image classification and for large language models (LLMs) demonstrate that our proposed SGLP outperforms the state-of-the-art methods in both accuracy and computational efficiency, presenting a more effective solution for deploying DNNs on resource-limited platforms. Our codes are available at https://github.com/itsnotacie/information-fusion-SGLP.
Online Policy Distillation with Decision-Attention
Yu, Xinqiang, Yang, Chuanguang, Yu, Chengqing, Huang, Libo, An, Zhulin, Xu, Yongjun
Policy Distillation (PD) has become an effective method to improve deep reinforcement learning tasks. The core idea of PD is to distill policy knowledge from a teacher agent to a student agent. However, the teacher-student framework requires a well-trained teacher model which is computationally expensive.In the light of online knowledge distillation, we study the knowledge transfer between different policies that can learn diverse knowledge from the same environment.In this work, we propose Online Policy Distillation (OPD) with Decision-Attention (DA), an online learning framework in which different policies operate in the same environment to learn different perspectives of the environment and transfer knowledge to each other to obtain better performance together. With the absence of a well-performance teacher policy, the group-derived targets play a key role in transferring group knowledge to each student policy. However, naive aggregation functions tend to cause student policies quickly homogenize. To address the challenge, we introduce the Decision-Attention module to the online policies distillation framework. The Decision-Attention module can generate a distinct set of weights for each policy to measure the importance of group members. We use the Atari platform for experiments with various reinforcement learning algorithms, including PPO and DQN. In different tasks, our method can perform better than an independent training policy on both PPO and DQN algorithms. This suggests that our OPD-DA can transfer knowledge between different policies well and help agents obtain more rewards.
Online Knowledge Distillation via Mutual Contrastive Learning for Visual Recognition
Yang, Chuanguang, An, Zhulin, Zhou, Helong, Zhuang, Fuzhen, Xu, Yongjun, Zhan, Qian
The teacher-free online Knowledge Distillation (KD) aims to train an ensemble of multiple student models collaboratively and distill knowledge from each other. Although existing online KD methods achieve desirable performance, they often focus on class probabilities as the core knowledge type, ignoring the valuable feature representational information. We present a Mutual Contrastive Learning (MCL) framework for online KD. The core idea of MCL is to perform mutual interaction and transfer of contrastive distributions among a cohort of networks in an online manner. Our MCL can aggregate cross-network embedding information and maximize the lower bound to the mutual information between two networks. This enables each network to learn extra contrastive knowledge from others, leading to better feature representations, thus improving the performance of visual recognition tasks. Beyond the final layer, we extend MCL to intermediate layers and perform an adaptive layer-matching mechanism trained by meta-optimization. Experiments on image classification and transfer learning to visual recognition tasks show that layer-wise MCL can lead to consistent performance gains against state-of-the-art online KD approaches. The superiority demonstrates that layer-wise MCL can guide the network to generate better feature representations. Our code is publicly avaliable at https://github.com/winycg/L-MCL.
Softer Pruning, Incremental Regularization
Cai, Linhang, An, Zhulin, Yang, Chuanguang, Xu, Yongjun
Network pruning is widely used to compress Deep Neural Networks (DNNs). The Soft Filter Pruning (SFP) method zeroizes the pruned filters during training while updating them in the next training epoch. Thus the trained information of the pruned filters is completely dropped. To utilize the trained pruned filters, we proposed a SofteR Filter Pruning (SRFP) method and its variant, Asymptotic SofteR Filter Pruning (ASRFP), simply decaying the pruned weights with a monotonic decreasing parameter. Our methods perform well across various networks, datasets and pruning rates, also transferable to weight pruning. On ILSVRC-2012, ASRFP prunes 40% of the parameters on ResNet-34 with 1.63% top-1 and 0.68% top-5 accuracy improvement. In theory, SRFP and ASRFP are an incremental regularization of the pruned filters. Besides, We note that SRFP and ASRFP pursue better results while slowing down the speed of convergence.
EENA: Efficient Evolution of Neural Architecture
Zhu, Hui, An, Zhulin, Yang, Chuanguang, Xu, Kaiqiang, Xu, Yongjun
Latest algorithms for automatic neural architecture search perform remarkable but are basically directionless in search space and computational expensive in training of every intermediate architecture. In this paper, we propose a method for efficient architecture search called EENA (Efficient Evolution of Neural Architecture). Due to the elaborately designed mutation and crossover operations, the evolution process can be guided by the information have already been learned. Therefore, less computational effort will be required while the searching and training time can be reduced significantly. On CIFAR-10 classification, EENA using minimal computational resources (0.65 GPU days) can design highly effective neural architecture which achieves 2.56% test error with 8.47M parameters. Furthermore, the best architecture discovered is also transferable for CIFAR-100.