Goto

Collaborating Authors

 Yang, Cheng


Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration

arXiv.org Artificial Intelligence

Despite Graph Neural Networks (GNNs) have achieved remarkable accuracy, whether the results are trustworthy is still unexplored. Previous studies suggest that many modern neural networks are over-confident on the predictions, however, surprisingly, we discover that GNNs are primarily in the opposite direction, i.e., GNNs are under-confident. Therefore, the confidence calibration for GNNs is highly desired. In this paper, we propose a novel trustworthy GNN model by designing a topology-aware post-hoc calibration function. Specifically, we first verify that the confidence distribution in a graph has homophily property, and this finding inspires us to design a calibration GNN model (CaGCN) to learn the calibration function. CaGCN is able to obtain a unique transformation from logits of GNNs to the calibrated confidence for each node, meanwhile, such transformation is able to preserve the order between classes, satisfying the accuracy-preserving property. Moreover, we apply the calibration GNN to self-training framework, showing that more trustworthy pseudo labels can be obtained with the calibrated confidence and further improve the performance. Extensive experiments demonstrate the effectiveness of our proposed model in terms of both calibration and accuracy.


Copy and Paste method based on Pose for Re-identification

arXiv.org Artificial Intelligence

The aim of re-identification is to match objects in surveillance cameras with different viewpoints. Although ReID is developing at a considerably rapid pace, there is currently no processing method for the ReID task in multiple scenarios. However, such processing method is required in real life scenarios, such as those involving security. In the present study, a new ReID scenario was explored, which differs in terms of perspective, background, and pose(walking or cycling). Obviously, ordinary ReID processing methods cannot effectively handle such a scenario, with the introduction of image datasets being the optimal solution, in addition to being considerably expensive. To solve the aforementioned problem, a simple and effective method to generate images in several new scenarios was proposed, which is names the Copy and Paste method based on Pose(CPP). The CPP method is based on key point detection, using copy as paste, to composite a new semantic image dataset in two different semantic image datasets. As an example, pedestrains and bicycles can be used to generate several images that show the same person riding on different bicycles. The CPP method is suitable for ReID tasks in new scenarios and outperforms the traditional methods when applied to the original datasets in original ReID tasks. To be specific, the CPP method can also perform better in terms of generalization for third-party public dataset. The Code and datasets composited by the CPP method will be available in the future.


Evaluating Modules in Graph Contrastive Learning

arXiv.org Machine Learning

The recent emergence of contrastive learning approaches facilitates the research on graph representation learning (GRL), introducing graph contrastive learning (GCL) into the literature. These methods contrast semantically similar and dissimilar sample pairs to encode the semantics into node or graph embeddings. However, most existing works only performed model-level evaluation, and did not explore the combination space of modules for more comprehensive and systematic studies. For effective module-level evaluation, we propose a framework that decomposes GCL models into four modules: (1) a sampler to generate anchor, positive and negative data samples (nodes or graphs); (2) an encoder and a readout function to get sample embeddings; (3) a discriminator to score each sample pair (anchor-positive and anchor-negative); and (4) an estimator to define the loss function. Based on this framework, we conduct controlled experiments over a wide range of architectural designs and hyperparameter settings on node and graph classification tasks. Specifically, we manage to quantify the impact of a single module, investigate the interaction between modules, and compare the overall performance with current model architectures. Our key findings include a set of module-level guidelines for GCL, e.g., simple samplers from LINE and DeepWalk are strong and robust; an MLP encoder associated with Sum readout could achieve competitive performance on graph classification. Finally, we release our implementations and results as OpenGCL, a modularized toolkit that allows convenient reproduction, standard model and module evaluation, and easy extension.


SAS: Self-Augmented Strategy for Language Model Pre-training

arXiv.org Artificial Intelligence

The core of a self-supervised learning method for pre-training language models includes the design of appropriate data augmentation and corresponding pre-training task(s). Most data augmentations in language model pre-training are context-independent. The seminal contextualized augmentation recently proposed by the ELECTRA requires a separate generator, which leads to extra computation cost as well as the challenge in adjusting the capability of its generator relative to that of the other model component(s). We propose a self-augmented strategy (SAS) that uses a single forward pass through the model to augment the input data for model training in the next epoch. Essentially our strategy eliminates a separate generator network and uses only one network to generate the data augmentation and undertake two pre-training tasks (the MLM task and the RTD task) jointly, which naturally avoids the challenge in adjusting the generator's capability as well as reduces the computation cost. Additionally, our SAS is a general strategy such that it can seamlessly incorporate many new techniques emerging recently or in the future, such as the disentangled attention mechanism recently proposed by the DeBERTa model. Our experiments show that our SAS is able to outperform the ELECTRA and other state-of-the-art models in the GLUE tasks with the same or less computation cost.


KACC: A Multi-task Benchmark for Knowledge Abstraction, Concretization and Completion

arXiv.org Artificial Intelligence

A comprehensive knowledge graph (KG) contains an instance-level entity graph and an ontology-level concept graph. The two-view KG provides a testbed for models to "simulate" human's abilities on knowledge abstraction, concretization, and completion (KACC), which are crucial for human to recognize the world and manage learned knowledge. Existing studies mainly focus on partial aspects of KACC. In order to promote thorough analyses for KACC abilities of models, we propose a unified KG benchmark by improving existing benchmarks in terms of dataset scale, task coverage, and difficulty. Specifically, we collect new datasets that contain larger concept graphs, abundant cross-view links as well as dense entity graphs. Based on the datasets, we propose novel tasks such as multi-hop knowledge abstraction (MKA), multi-hop knowledge concretization (MKC) and then design a comprehensive benchmark. For MKA and MKC tasks, we further annotate multi-hop hierarchical triples as harder samples. The experimental results of existing methods demonstrate the challenges of our benchmark. The resource is available at https://github.com/thunlp/KACC.


Markdowns in E-Commerce Fresh Retail: A Counterfactual Prediction and Multi-Period Optimization Approach

arXiv.org Artificial Intelligence

In this paper, by leveraging abundant observational transaction data, we propose a novel data-driven and interpretable pricing approach for markdowns, consisting of counterfactual prediction and multi-period price optimization. Firstly, we build a semi-parametric structural model to learn individual price elasticity and predict counterfactual demand. This semi-parametric model takes advantage of both the predictability of nonparametric machine learning model and the interpretability of economic model. Secondly, we propose a multi-period dynamic pricing algorithm to maximize the overall profit of a perishable product over its finite selling horizon. Different with the traditional approaches that use the deterministic demand, we model the uncertainty of counterfactual demand since it inevitably has randomness in the prediction process. Based on the stochastic model, we derive a sequential pricing strategy by Markov decision process, and design a two-stage algorithm to solve it. The proposed algorithm is very efficient. It reduces the time complexity from exponential to polynomial. Experimental results show the advantages of our pricing algorithm, and the proposed framework has been successfully deployed to the well-known e-commerce fresh retail scenario - Freshippo.


Incorporating Vision Bias into Click Models for Image-oriented Search Engine

arXiv.org Artificial Intelligence

Most typical click models assume that the probability of a document to be examined by users only depends on position, such as PBM and UBM. It works well in various kinds of search engines. However, in a search engine where massive candidate documents display images as responses to the query, the examination probability should not only depend on position. The visual appearance of an image-oriented document also plays an important role in its opportunity to be examined. In this paper, we assume that vision bias exists in an image-oriented search engine as another crucial factor affecting the examination probability aside from position. Specifically, we apply this assumption to classical click models and propose an extended model, to better capture the examination probabilities of documents. We use regression-based EM algorithm to predict the vision bias given the visual features extracted from candidate documents. Empirically, we evaluate our model on a dataset developed from a real-world online image-oriented search engine, and demonstrate that our proposed model can achieve significant improvements over its baseline model in data fitness and sparsity handling.


Nonseparable Symplectic Neural Networks

arXiv.org Machine Learning

Predicting the behaviors of Hamiltonian systems has been drawing increasing attention in scientific machine learning. However, the vast majority of the literature was focused on predicting separable Hamiltonian systems with their kinematic and potential energy terms being explicitly decoupled, while building data-driven paradigms to predict nonseparable Hamiltonian systems that are ubiquitous in fluid dynamics and quantum mechanics were rarely explored. The main computational challenge lies in the effective embedding of symplectic priors to describe the inherently coupled evolution of position and momentum, which typically exhibits intricate dynamics with many degrees of freedom. To solve the problem, we propose a novel neural network architecture, Nonseparable Symplectic Neural Networks (NSSNNs), to uncover and embed the symplectic structure of a nonseparable Hamiltonian system from limited observation data. The enabling mechanics of our approach is an augmented symplectic time integrator to decouple the position and momentum energy terms and facilitate their evolution. We demonstrated the efficacy and versatility of our method by predicting a wide range of Hamiltonian systems, both separable and nonseparable, including vortical flow and quantum system. We showed the unique computational merits of our approach to yield long-term, accurate, and robust predictions for large-scale Hamiltonian systems by rigorously enforcing symplectomorphism.


Signed Graph Metric Learning via Gershgorin Disc Alignment

arXiv.org Machine Learning

Given a convex and differentiable objective $Q(\M)$ for a real, symmetric matrix $\M$ in the positive definite (PD) cone---used to compute Mahalanobis distances---we propose a fast general metric learning framework that is entirely projection-free. We first assume that $\M$ resides in a space $\cS$ of generalized graph Laplacian matrices (graph metric matrices) corresponding to balanced signed graphs. Unlike low-rank metric matrices common in the literature, $\cS$ includes the important diagonal-only matrices as a special case. The key theorem to circumvent full eigen-decomposition and enable fast metric matrix optimization is Gershgorin disc alignment (GDA): given graph metric matrix $\M \in \cS$ and diagonal matrix $\S$, where $S_{ii} = 1/v_i$ and $\v$ is the first eigenvector of $\M$, we prove that Gershgorin disc left-ends of similar transform $\B = \S \M \S^{-1}$ are perfectly aligned at the smallest eigenvalue $\lambda_{\min}$. Using this theorem, we replace the PD cone constraint in the metric learning problem with tightest possible linear constraints per iteration, so that the alternating optimization of the diagonal / off-diagonal terms in $\M$ can be solved efficiently as linear programs via Frank-Wolfe iterations. We update $\v$ using Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) with warm start as matrix entries in $\M$ are optimized successively. Experiments show that our graph metric optimization is significantly faster than cone-projection methods, and produces competitive binary classification performance.


Adaptive Graph Encoder for Attributed Graph Embedding

arXiv.org Machine Learning

Attributed graph embedding, which learns vector representations from graph topology and node features, is a challenging task for graph analysis. Recently, methods based on graph convolutional networks (GCNs) have made great progress on this task. However,existing GCN-based methods have three major drawbacks. Firstly,our experiments indicate that the entanglement of graph convolutional filters and weight matrices will harm both the performance and robustness. Secondly, we show that graph convolutional filters in these methods reveal to be special cases of generalized Laplacian smoothing filters, but they do not preserve optimal low-pass characteristics. Finally, the training objectives of existing algorithms are usually recovering the adjacency matrix or feature matrix, which are not always consistent with real-world applications. To address these issues, we propose Adaptive Graph Encoder (AGE), a novel attributed graph embedding framework. AGE consists of two modules: (1) To better alleviate the high-frequency noises in the node features, AGE first applies a carefully-designed Laplacian smoothing filter. (2) AGE employs an adaptive encoder that iteratively strengthens the filtered features for better node embeddings. We conduct experiments using four public benchmark datasets to validate AGE on node clustering and link prediction tasks. Experimental results show that AGE consistently outperforms state-of-the-art graph embedding methods considerably on these tasks.