Not enough data to create a plot.
Try a different view from the menu above.
Yang, Changbing
Parsing Through Boundaries in Chinese Word Segmentation
Chen, Yige, Li, Zelong, Yang, Changbing, Zhang, Cindy, Cady, Amandisa, Lee, Ai Ka, Zeng, Zejiao, Pan, Haihua, Park, Jungyeul
Chinese word segmentation is a foundational task in natural language processing (NLP), with far-reaching effects on syntactic analysis. Unlike alphabetic languages like English, Chinese lacks explicit word boundaries, making segmentation both necessary and inherently ambiguous. This study highlights the intricate relationship between word segmentation and syntactic parsing, providing a clearer understanding of how different segmentation strategies shape dependency structures in Chinese. Focusing on the Chinese GSD treebank, we analyze multiple word boundary schemes, each reflecting distinct linguistic and computational assumptions, and examine how they influence the resulting syntactic structures. To support detailed comparison, we introduce an interactive web-based visualization tool that displays parsing outcomes across segmentation methods.
Developing multilingual speech synthesis system for Ojibwe, Mi'kmaq, and Maliseet
Wang, Shenran, Yang, Changbing, Parkhill, Mike, Quinn, Chad, Hammerly, Christopher, Zhu, Jian
We present lightweight flow matching multilingual text-to-speech (TTS) systems for Ojibwe, Mi'kmaq, and Maliseet, three Indigenous languages in North America. Our results show that training a multilingual TTS model on three typologically similar languages can improve the performance over monolingual models, especially when data are scarce. Attention-free architectures are highly competitive with self-attention architecture with higher memory efficiency. Our research not only advances technical development for the revitalization of low-resource languages but also highlights the cultural gap in human evaluation protocols, calling for a more community-centered approach to human evaluation.
Multiple Sources are Better Than One: Incorporating External Knowledge in Low-Resource Glossing
Yang, Changbing, Nicolai, Garrett, Silfverberg, Miikka
In this paper, we address the data scarcity problem in automatic data-driven glossing for low-resource languages by coordinating multiple sources of linguistic expertise. We supplement models with translations at both the token and sentence level as well as leverage the extensive linguistic capability of modern LLMs. Our enhancements lead to an average absolute improvement of 5%-points in word-level accuracy over the previous state of the art on a typologically diverse dataset spanning six low-resource languages. The improvements are particularly noticeable for the lowest-resourced language Gitksan, where we achieve a 10%-point improvement. Furthermore, in a simulated ultra-low resource setting for the same six languages, training on fewer than 100 glossed sentences, we establish an average 10%-point improvement in word-level accuracy over the previous state-of-the-art system.
The taste of IPA: Towards open-vocabulary keyword spotting and forced alignment in any language
Zhu, Jian, Yang, Changbing, Samir, Farhan, Islam, Jahurul
In this project, we demonstrate that phoneme-based models for speech processing can achieve strong crosslinguistic generalizability to unseen languages. We curated the IPAPACK, a massively multilingual speech corpora with phonemic transcriptions, encompassing more than 115 languages from diverse language families, selectively checked by linguists. Based on the IPAPACK, we propose CLAP-IPA, a multi-lingual phoneme-speech contrastive embedding model capable of open-vocabulary matching between arbitrary speech signals and phonemic sequences. The proposed model was tested on 95 unseen languages, showing strong generalizability across languages. Temporal alignments between phonemes and speech signals also emerged from contrastive training, enabling zeroshot forced alignment in unseen languages. We further introduced a neural forced aligner IPA-ALIGNER by finetuning CLAP-IPA with the Forward-Sum loss to learn better phone-to-audio alignment. Evaluation results suggest that IPA-ALIGNER can generalize to unseen languages without adaptation.
Embedded Translations for Low-resource Automated Glossing
Yang, Changbing, Nicolai, Garrett, Silfverberg, Miikka
We investigate automatic interlinear glossing in low-resource settings. We augment a hard-attentional neural model with embedded translation information extracted from interlinear glossed text. After encoding these translations using large language models, specifically BERT and T5, we introduce a character-level decoder for generating glossed output. Aided by these enhancements, our model demonstrates an average improvement of 3.97\%-points over the previous state of the art on datasets from the SIGMORPHON 2023 Shared Task on Interlinear Glossing. In a simulated ultra low-resource setting, trained on as few as 100 sentences, our system achieves an average 9.78\%-point improvement over the plain hard-attentional baseline. These results highlight the critical role of translation information in boosting the system's performance, especially in processing and interpreting modest data sources. Our findings suggest a promising avenue for the documentation and preservation of languages, with our experiments on shared task datasets indicating significant advancements over the existing state of the art.
An Investigation of Noise in Morphological Inflection
Wiemerslage, Adam, Yang, Changbing, Nicolai, Garrett, Silfverberg, Miikka, Kann, Katharina
With a growing focus on morphological inflection systems for languages where high-quality data is scarce, training data noise is a serious but so far largely ignored concern. We aim at closing this gap by investigating the types of noise encountered within a pipeline for truly unsupervised morphological paradigm completion and its impact on morphological inflection systems: First, we propose an error taxonomy and annotation pipeline for inflection training data. Then, we compare the effect of different types of noise on multiple state-of-the-art inflection models. Finally, we propose a novel character-level masked language modeling (CMLM) pretraining objective and explore its impact on the models' resistance to noise. Our experiments show that various architectures are impacted differently by separate types of noise, but encoder-decoders tend to be more robust to noise than models trained with a copy bias. CMLM pretraining helps transformers, but has lower impact on LSTMs.