Yang, Brandon
Systems and Algorithms for Convolutional Multi-Hybrid Language Models at Scale
Ku, Jerome, Nguyen, Eric, Romero, David W., Brixi, Garyk, Yang, Brandon, Vorontsov, Anton, Taghibakhshi, Ali, Lu, Amy X., Burke, Dave P., Brockman, Greg, Massaroli, Stefano, Ré, Christopher, Hsu, Patrick D., Hie, Brian L., Ermon, Stefano, Poli, Michael
We introduce convolutional multi-hybrid architectures, with a design grounded on two simple observations. First, operators in hybrid models can be tailored to token manipulation tasks such as in-context recall, multi-token recall, and compression, with input-dependent convolutions and attention offering complementary performance. Second, co-designing convolution operators and hardware-aware algorithms enables efficiency gains in regimes where previous alternative architectures struggle to surpass Transformers. At the 40 billion parameter scale, we train end-to-end 1.2 to 2.9 times faster than optimized Transformers, and 1.1 to 1.4 times faster than previous generation hybrids. On H100 GPUs and model width 4096, individual operators in the proposed multi-hybrid StripedHyena 2 architecture achieve two-fold throughput improvement over linear attention and state-space models. Multi-hybrids excel at sequence modeling over byte-tokenized data, as demonstrated by the Evo 2 line of models. We discuss the foundations that enable these results, including architecture design, overlap-add blocked kernels for tensor cores, and dedicated all-to-all and point-to-point context parallelism strategies.
Language Models Enable Simple Systems for Generating Structured Views of Heterogeneous Data Lakes
Arora, Simran, Yang, Brandon, Eyuboglu, Sabri, Narayan, Avanika, Hojel, Andrew, Trummer, Immanuel, Ré, Christopher
A long standing goal of the data management community is to develop general, automated systems that ingest semi-structured documents and output queryable tables without human effort or domain specific customization. Given the sheer variety of potential documents, state-of-the art systems make simplifying assumptions and use domain specific training. In this work, we ask whether we can maintain generality by using large language models (LLMs). LLMs, which are pretrained on broad data, can perform diverse downstream tasks simply conditioned on natural language task descriptions. We propose and evaluate EVAPORATE, a simple, prototype system powered by LLMs. We identify two fundamentally different strategies for implementing this system: prompt the LLM to directly extract values from documents or prompt the LLM to synthesize code that performs the extraction. Our evaluations show a cost-quality tradeoff between these two approaches. Code synthesis is cheap, but far less accurate than directly processing each document with the LLM. To improve quality while maintaining low cost, we propose an extended code synthesis implementation, EVAPORATE-CODE+, which achieves better quality than direct extraction. Our key insight is to generate many candidate functions and ensemble their extractions using weak supervision. EVAPORATE-CODE+ not only outperforms the state-of-the art systems, but does so using a sublinear pass over the documents with the LLM. This equates to a 110x reduction in the number of tokens the LLM needs to process, averaged across 16 real-world evaluation settings of 10k documents each.
Soft Conditional Computation
Yang, Brandon, Bender, Gabriel, Le, Quoc V., Ngiam, Jiquan
Conditional computation aims to increase the size and accuracy of a network, at a small increase in inference cost. Previous hard-routing models explicitly route the input to a subset of experts. We propose soft conditional computation, which, in contrast, utilizes all experts while still permitting efficient inference through parameter routing. Concretely, for a given convolutional layer, we wish to compute a linear combination of $n$ experts $\alpha_1 \cdot (W_1 * x) + \ldots + \alpha_n \cdot (W_n * x)$, where $\alpha_1, \ldots, \alpha_n$ are functions of the input learned through gradient descent. A straightforward evaluation requires $n$ convolutions. We propose an equivalent form of the above computation, $(\alpha_1 W_1 + \ldots + \alpha_n W_n) * x$, which requires only a single convolution. We demonstrate the efficacy of our method, named CondConv, by scaling up the MobileNetV1, MobileNetV2, and ResNet-50 model architectures to achieve higher accuracy while retaining efficient inference. On the ImageNet classification dataset, CondConv improves the top-1 validation accuracy of the MobileNetV1(0.5x) model from 63.8% to 71.6% while only increasing inference cost by 27%. On COCO object detection, CondConv improves the minival mAP of a MobileNetV1(1.0x) SSD model from 20.3 to 22.4 with just a 4% increase in inference cost.
Sample-Efficient Deep RL with Generative Adversarial Tree Search
Azizzadenesheli, Kamyar, Yang, Brandon, Liu, Weitang, Brunskill, Emma, Lipton, Zachary C, Anandkumar, Animashree
We propose Generative Adversarial Tree Search (GATS), a sample-efficient Deep Reinforcement Learning (DRL) algorithm. While Monte Carlo Tree Search (MCTS) is known to be effective for search and planning in RL, it is often sample-inefficient and therefore expensive to apply in practice. In this work, we develop a Generative Adversarial Network (GAN) architecture to model an environment's dynamics and a predictor model for the reward function. We exploit collected data from interaction with the environment to learn these models, which we then use for model-based planning. During planning, we deploy a finite depth MCTS, using the learned model for tree search and a learned Q-value for the leaves, to find the best action. We theoretically show that GATS improves the bias-variance trade-off in value-based DRL. Moreover, we show that the generative model learns the model dynamics using orders of magnitude fewer samples than the Q-learner. In non-stationary settings where the environment model changes, we find the generative model adapts significantly faster than the Q-learner to the new environment.
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
Rajpurkar, Pranav, Irvin, Jeremy, Zhu, Kaylie, Yang, Brandon, Mehta, Hershel, Duan, Tony, Ding, Daisy, Bagul, Aarti, Langlotz, Curtis, Shpanskaya, Katie, Lungren, Matthew P., Ng, Andrew Y.
We develop an algorithm that can detect pneumonia from chest X-rays at a level exceeding practicing radiologists. Our algorithm, CheXNet, is a 121-layer convolutional neural network trained on ChestX-ray14, currently the largest publicly available chest X-ray dataset, containing over 100,000 frontal-view X-ray images with 14 diseases. Four practicing academic radiologists annotate a test set, on which we compare the performance of CheXNet to that of radiologists. We find that CheXNet exceeds average radiologist performance on the F1 metric. We extend CheXNet to detect all 14 diseases in ChestX-ray14 and achieve state of the art results on all 14 diseases.