Goto

Collaborating Authors

 Yan Liu



SPALS: Fast Alternating Least Squares via Implicit Leverage Scores Sampling

Neural Information Processing Systems

Tensor CANDECOMP/PARAFAC (CP) decomposition is a powerful but computationally challenging tool in modern data analytics. In this paper, we show ways of sampling intermediate steps of alternating minimization algorithms for computing low rank tensor CP decompositions, leading to the sparse alternating least squares (SPALS) method. Specifically, we sample the Khatri-Rao product, which arises as an intermediate object during the iterations of alternating least squares. This product captures the interactions between different tensor modes, and form the main computational bottleneck for solving many tensor related tasks. By exploiting the spectral structures of the matrix Khatri-Rao product, we provide efficient access to its statistical leverage scores. When applied to the tensor CP decomposition, our method leads to the first algorithm that runs in sublinear time per-iteration and approximates the output of deterministic alternating least squares algorithms.


Learning Influence Functions from Incomplete Observations

Neural Information Processing Systems

We study the problem of learning influence functions under incomplete observations of node activations. Incomplete observations are a major concern as most (online and real-world) social networks are not fully observable. We establish both proper and improper PAC learnability of influence functions under randomly missing observations. Proper PAC learnability under the Discrete-Time Linear Threshold (DLT) and Discrete-Time Independent Cascade (DIC) models is established by reducing incomplete observations to complete observations in a modified graph. Our improper PAC learnability result applies for the DLT and DIC models as well as the Continuous-Time Independent Cascade (CIC) model. It is based on a parametrization in terms of reachability features, and also gives rise to an efficient and practical heuristic. Experiments on synthetic and real-world datasets demonstrate the ability of our method to compensate even for a fairly large fraction of missing observations.


Neural Interaction Transparency (NIT): Disentangling Learned Interactions for Improved Interpretability

Neural Information Processing Systems

Neural networks are known to model statistical interactions, but they entangle the interactions at intermediate hidden layers for shared representation learning. We propose a framework, Neural Interaction Transparency (NIT), that disentangles the shared learning across different interactions to obtain their intrinsic lower-order and interpretable structure. This is done through a novel regularizer that directly penalizes interaction order. We show that disentangling interactions reduces a feedforward neural network to a generalized additive model with interactions, which can lead to transparent models that perform comparably to the state-of-theart models. NIT is also flexible and efficient; it can learn generalized additive models with maximumK-order interactions by training onlyO(1) models.