Plotting

 Yan, Zhijie


Accurate and Reliable Confidence Estimation Based on Non-Autoregressive End-to-End Speech Recognition System

arXiv.org Artificial Intelligence

Estimating confidence scores for recognition results is a classic task in ASR field and of vital importance for kinds of downstream tasks and training strategies. Previous end-to-end~(E2E) based confidence estimation models (CEM) predict score sequences of equal length with input transcriptions, leading to unreliable estimation when deletion and insertion errors occur. In this paper we proposed CIF-Aligned confidence estimation model (CA-CEM) to achieve accurate and reliable confidence estimation based on novel non-autoregressive E2E ASR model - Paraformer. CA-CEM utilizes the modeling character of continuous integrate-and-fire (CIF) mechanism to generate token-synchronous acoustic embedding, which solves the estimation failure issue above. We measure the quality of estimation with AUC and RMSE in token level and ECE-U - a proposed metrics in utterance level. CA-CEM gains 24% and 19% relative reduction on ECE-U and also better AUC and RMSE on two test sets. Furthermore, we conduct analysis to explore the potential of CEM for different ASR related usage.


Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition

arXiv.org Artificial Intelligence

Transformers have recently dominated the ASR field. Although able to yield good performance, they involve an autoregressive (AR) decoder to generate tokens one by one, which is computationally inefficient. To speed up inference, non-autoregressive (NAR) methods, e.g. single-step NAR, were designed, to enable parallel generation. However, due to an independence assumption within the output tokens, performance of single-step NAR is inferior to that of AR models, especially with a large-scale corpus. There are two challenges to improving single-step NAR: Firstly to accurately predict the number of output tokens and extract hidden variables; secondly, to enhance modeling of interdependence between output tokens. To tackle both challenges, we propose a fast and accurate parallel transformer, termed Paraformer. This utilizes a continuous integrate-and-fire based predictor to predict the number of tokens and generate hidden variables. A glancing language model (GLM) sampler then generates semantic embeddings to enhance the NAR decoder's ability to model context interdependence. Finally, we design a strategy to generate negative samples for minimum word error rate training to further improve performance. Experiments using the public AISHELL-1, AISHELL-2 benchmark, and an industrial-level 20,000 hour task demonstrate that the proposed Paraformer can attain comparable performance to the state-of-the-art AR transformer, with more than 10x speedup.


MUG: A General Meeting Understanding and Generation Benchmark

arXiv.org Artificial Intelligence

Listening to long video/audio recordings from video conferencing and online courses for acquiring information is extremely inefficient. Even after ASR systems transcribe recordings into long-form spoken language documents, reading ASR transcripts only partly speeds up seeking information. It has been observed that a range of NLP applications, such as keyphrase extraction, topic segmentation, and summarization, significantly improve users' efficiency in grasping important information. The meeting scenario is among the most valuable scenarios for deploying these spoken language processing (SLP) capabilities. However, the lack of large-scale public meeting datasets annotated for these SLP tasks severely hinders their advancement. To prompt SLP advancement, we establish a large-scale general Meeting Understanding and Generation Benchmark (MUG) to benchmark the performance of a wide range of SLP tasks, including topic segmentation, topic-level and session-level extractive summarization and topic title generation, keyphrase extraction, and action item detection. To facilitate the MUG benchmark, we construct and release a large-scale meeting dataset for comprehensive long-form SLP development, the AliMeeting4MUG Corpus, which consists of 654 recorded Mandarin meeting sessions with diverse topic coverage, with manual annotations for SLP tasks on manual transcripts of meeting recordings. To the best of our knowledge, the AliMeeting4MUG Corpus is so far the largest meeting corpus in scale and facilitates most SLP tasks. In this paper, we provide a detailed introduction of this corpus, SLP tasks and evaluation methods, baseline systems and their performance.


Overview of the ICASSP 2023 General Meeting Understanding and Generation Challenge (MUG)

arXiv.org Artificial Intelligence

ICASSP2023 General Meeting Understanding and Generation Challenge (MUG) focuses on prompting a wide range of spoken language processing (SLP) research on meeting transcripts, as SLP applications are critical to improve users' efficiency in grasping important information in meetings. MUG includes five tracks, including topic segmentation, topic-level and session-level extractive summarization, topic title generation, keyphrase extraction, and action item detection. To facilitate MUG, we construct and release a large-scale meeting dataset, the AliMeeting4MUG Corpus.


Achieving Timestamp Prediction While Recognizing with Non-Autoregressive End-to-End ASR Model

arXiv.org Artificial Intelligence

Conventional ASR systems use frame-level phoneme posterior to conduct force-alignment~(FA) and provide timestamps, while end-to-end ASR systems especially AED based ones are short of such ability. This paper proposes to perform timestamp prediction~(TP) while recognizing by utilizing continuous integrate-and-fire~(CIF) mechanism in non-autoregressive ASR model - Paraformer. Foucing on the fire place bias issue of CIF, we conduct post-processing strategies including fire-delay and silence insertion. Besides, we propose to use scaled-CIF to smooth the weights of CIF output, which is proved beneficial for both ASR and TP task. Accumulated averaging shift~(AAS) and diarization error rate~(DER) are adopted to measure the quality of timestamps and we compare these metrics of proposed system and conventional hybrid force-alignment system. The experiment results over manually-marked timestamps testset show that the proposed optimization methods significantly improve the accuracy of CIF timestamps, reducing 66.7\% and 82.1\% of AAS and DER respectively. Comparing to Kaldi force-alignment trained with the same data, optimized CIF timestamps achieved 12.3\% relative AAS reduction.


MMSpeech: Multi-modal Multi-task Encoder-Decoder Pre-training for Speech Recognition

arXiv.org Artificial Intelligence

In this paper, we propose a novel multi-modal multi-task encoder-decoder pre-training framework (MMSpeech) for Mandarin automatic speech recognition (ASR), which employs both unlabeled speech and text data. The main difficulty in speech-text joint pre-training comes from the significant difference between speech and text modalities, especially for Mandarin speech and text. Unlike English and other languages with an alphabetic writing system, Mandarin uses an ideographic writing system where character and sound are not tightly mapped to one another. Therefore, we propose to introduce the phoneme modality into pre-training, which can help capture modality-invariant information between Mandarin speech and text. Specifically, we employ a multi-task learning framework including five self-supervised and supervised tasks with speech and text data. For end-to-end pre-training, we introduce self-supervised speech-to-pseudo-codes (S2C) and phoneme-to-text (P2T) tasks utilizing unlabeled speech and text data, where speech-pseudo-codes pairs and phoneme-text pairs are a supplement to the supervised speech-text pairs. To train the encoder to learn better speech representation, we introduce self-supervised masked speech prediction (MSP) and supervised phoneme prediction (PP) tasks to learn to map speech into phonemes. Besides, we directly add the downstream supervised speech-to-text (S2T) task into the pre-training process, which can further improve the pre-training performance and achieve better recognition results even without fine-tuning. Experiments on AISHELL-1 show that our proposed method achieves state-of-the-art performance, with a more than 40% relative improvement compared with other pre-training methods.


BeamTransformer: Microphone Array-based Overlapping Speech Detection

arXiv.org Artificial Intelligence

We propose BeamTransformer, an efficient architecture to leverage beamformer's edge in spatial filtering and transformer's capability in context sequence modeling. BeamTransformer seeks to optimize modeling of sequential relationship among signals from different spatial direction. Overlapping speech detection is one of the tasks where such optimization is favorable. In this paper we effectively apply BeamTransformer to detect overlapping segments. Comparing to single-channel approach, BeamTransformer exceeds in learning to identify the relationship among different beam sequences and hence able to make predictions not only from the acoustic signals but also the localization of the source. The results indicate that a successful incorporation of microphone array signals can lead to remarkable gains. Moreover, BeamTransformer takes one step further, as speech from overlapped speakers have been internally separated into different beams.