Yan, Yujun
MindLLM: A Subject-Agnostic and Versatile Model for fMRI-to-Text Decoding
Qiu, Weikang, Huang, Zheng, Hu, Haoyu, Feng, Aosong, Yan, Yujun, Ying, Rex
Decoding functional magnetic resonance imaging (fMRI) signals into text has been a key challenge in the neuroscience community, with the potential to advance brain-computer interfaces and uncover deeper insights into brain mechanisms. However, existing approaches often struggle with suboptimal predictive performance, limited task variety, and poor generalization across subjects. In response to this, we propose MindLLM, a model designed for subject-agnostic and versatile fMRI-to-text decoding. MindLLM consists of an fMRI encoder and an off-the-shelf LLM. The fMRI encoder employs a neuroscience-informed attention mechanism, which is capable of accommodating subjects with varying input shapes and thus achieves high-performance subject-agnostic decoding. Moreover, we introduce Brain Instruction Tuning (BIT), a novel approach that enhances the model's ability to capture diverse semantic representations from fMRI signals, facilitating more versatile decoding. We evaluate MindLLM on comprehensive fMRI-to-text benchmarks. Results demonstrate that our model outperforms the baselines, improving downstream tasks by 12.0%, unseen subject generalization by 16.4%, and novel task adaptation by 25.0%. Furthermore, the attention patterns in MindLLM provide interpretable insights into its decision-making process.
Exploring Consistency in Graph Representations:from Graph Kernels to Graph Neural Networks
Liu, Xuyuan, Cai, Yinghao, Yang, Qihui, Yan, Yujun
Graph Neural Networks (GNNs) have emerged as a dominant approach in graph representation learning, yet they often struggle to capture consistent similarity relationships among graphs. While graph kernel methods such as the Weisfeiler-Lehman subtree (WL-subtree) and Weisfeiler-Lehman optimal assignment (WLOA) kernels are effective in capturing similarity relationships, they rely heavily on predefined kernels and lack sufficient non-linearity for more complex data patterns. Our work aims to bridge the gap between neural network methods and kernel approaches by enabling GNNs to consistently capture relational structures in their learned representations. Given the analogy between the message-passing process of GNNs and WL algorithms, we thoroughly compare and analyze the properties of WL-subtree and WLOA kernels. We find that the similarities captured by WLOA at different iterations are asymptotically consistent, ensuring that similar graphs remain similar in subsequent iterations, thereby leading to superior performance over the WL-subtree kernel. Inspired by these findings, we conjecture that the consistency in the similarities of graph representations across GNN layers is crucial in capturing relational structures and enhancing graph classification performance. Thus, we propose a loss to enforce the similarity of graph representations to be consistent across different layers. Our empirical analysis verifies our conjecture and shows that our proposed consistency loss can significantly enhance graph classification performance across several GNN backbones on various datasets.
Enhancing Size Generalization in Graph Neural Networks through Disentangled Representation Learning
Huang, Zheng, Yang, Qihui, Zhou, Dawei, Yan, Yujun
Although most graph neural networks (GNNs) can operate on graphs of any size, their classification performance often declines on graphs larger than those encountered during training. Existing methods insufficiently address the removal of size information from graph representations, resulting in sub-optimal performance and reliance on backbone models. In response, we propose DISGEN, a novel and model-agnostic framework designed to disentangle size factors from graph representations. DISGEN employs size- and task-invariant augmentations and introduces a decoupling loss that minimizes shared information in hidden representations, with theoretical guarantees for its effectiveness. Our empirical results show that DISGEN outperforms the state-of-the-art models by up to 6% on real-world datasets, underscoring its effectiveness in enhancing the size generalizability of GNNs. Our codes are available at: https://github.com/GraphmindDartmouth/DISGEN.
Medformer: A Multi-Granularity Patching Transformer for Medical Time-Series Classification
Wang, Yihe, Huang, Nan, Li, Taida, Yan, Yujun, Zhang, Xiang
Medical time series data, such as Electroencephalography (EEG) and Electrocardiography (ECG), play a crucial role in healthcare, such as diagnosing brain and heart diseases. Existing methods for medical time series classification primarily rely on handcrafted biomarkers extraction and CNN-based models, with limited exploration of transformers tailored for medical time series. In this paper, we introduce Medformer, a multi-granularity patching transformer tailored specifically for medical time series classification. Our method incorporates three novel mechanisms to leverage the unique characteristics of medical time series: cross-channel patching to leverage inter-channel correlations, multi-granularity embedding for capturing features at different scales, and two-stage (intra- and inter-granularity) multi-granularity self-attention for learning features and correlations within and among granularities. We conduct extensive experiments on five public datasets under both subject-dependent and challenging subject-independent setups. Results demonstrate Medformer's superiority over 10 baselines, achieving top averaged ranking across five datasets on all six evaluation metrics. These findings underscore the significant impact of our method on healthcare applications, such as diagnosing Myocardial Infarction, Alzheimer's, and Parkinson's disease. We release the source code at \url{https://github.com/DL4mHealth/Medformer}.
Size Generalization of Graph Neural Networks on Biological Data: Insights and Practices from the Spectral Perspective
Li, Gaotang, Koutra, Danai, Yan, Yujun
We investigate size-induced distribution shifts in graphs and assess their impact on the ability of graph neural networks (GNNs) to generalize to larger graphs relative to the training data. Existing literature presents conflicting conclusions on GNNs' size generalizability, primarily due to disparities in application domains and underlying assumptions concerning size-induced distribution shifts. Motivated by this, we take a data-driven approach: we focus on real biological datasets and seek to characterize the types of size-induced distribution shifts. Diverging from prior approaches, we adopt a spectral perspective and identify that spectrum differences induced by size are related to differences in subgraph patterns (e.g., average cycle lengths). While previous studies have identified that the inability of GNNs in capturing subgraph information negatively impacts their in-distribution generalization, our findings further show that this decline is more pronounced when evaluating on larger test graphs not encountered during training. Based on these spectral insights, we introduce a simple yet effective model-agnostic strategy, which makes GNNs aware of these important subgraph patterns to enhance their size generalizability. Our empirical results reveal that our proposed size-insensitive attention strategy substantially enhances graph classification performance on large test graphs, which are 2-10 times larger than the training graphs, resulting in an improvement in F1 scores by up to 8%.
Interpretable Sparsification of Brain Graphs: Better Practices and Effective Designs for Graph Neural Networks
Li, Gaotang, Duda, Marlena, Zhang, Xiang, Koutra, Danai, Yan, Yujun
Brain graphs, which model the structural and functional relationships between brain regions, are crucial in neuroscientific and clinical applications involving graph classification. However, dense brain graphs pose computational challenges including high runtime and memory usage and limited interpretability. In this paper, we investigate effective designs in Graph Neural Networks (GNNs) to sparsify brain graphs by eliminating noisy edges. While prior works remove noisy edges based on explainability or task-irrelevant properties, their effectiveness in enhancing performance with sparsified graphs is not guaranteed. Moreover, existing approaches often overlook collective edge removal across multiple graphs. To address these issues, we introduce an iterative framework to analyze different sparsification models. Our findings are as follows: (i) methods prioritizing interpretability may not be suitable for graph sparsification as they can degrade GNNs' performance in graph classification tasks; (ii) simultaneously learning edge selection with GNN training is more beneficial than post-training; (iii) a shared edge selection across graphs outperforms separate selection for each graph; and (iv) task-relevant gradient information aids in edge selection. Based on these insights, we propose a new model, Interpretable Graph Sparsification (IGS), which enhances graph classification performance by up to 5.1% with 55.0% fewer edges. The retained edges identified by IGS provide neuroscientific interpretations and are supported by well-established literature.
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
Yan, Yujun, Hashemi, Milad, Swersky, Kevin, Yang, Yaoqing, Koutra, Danai
In node classification tasks, graph convolutional neural networks (GCNs) have demonstrated competitive performance over traditional methods on diverse graph data. However, it is known that the performance of GCNs degrades with increasing number of layers (oversmoothing problem) and recent studies have also shown that GCNs may perform worse in heterophilous graphs, where neighboring nodes tend to belong to different classes (heterophily problem). These two problems are usually viewed as unrelated, and thus are studied independently, often at the graph filter level from a spectral perspective. We are the first to take a unified perspective to jointly explain the oversmoothing and heterophily problems at the node level. Specifically, we profile the nodes via two quantitative metrics: the relative degree of a node (compared to its neighbors) and the node-level heterophily. Our theory shows that the interplay of these two profiling metrics defines three cases of node behaviors, which explain the oversmoothing and heterophily problems jointly and can predict the performance of GCNs. Based on insights from our theory, we show theoretically and empirically the effectiveness of two strategies: structure-based edge correction, which learns corrected edge weights from structural properties (i.e., degrees), and feature-based edge correction, which learns signed edge weights from node features. Compared to other approaches, which tend to handle well either heterophily or oversmoothing, we show that {our model, GGCN}, which incorporates the two strategies performs well in both problems.
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
Zhu, Jiong, Yan, Yujun, Zhao, Lingxiao, Heimann, Mark, Akoglu, Leman, Koutra, Danai
We investigate the representation power of graph neural networks in the semi-supervised node classification task under heterophily or low homophily, i.e., in networks where connected nodes may have different class labels and dissimilar features. Many popular GNNs fail to generalize to this setting, and are even outperformed by models that ignore the graph structure (e.g., multilayer perceptrons). Motivated by this limitation, we identify a set of key designs -- ego- and neighbor-embedding separation, higher-order neighborhoods, and combination of intermediate representations -- that boost learning from the graph structure under heterophily. We combine them into a graph neural network, H2GCN, which we use as the base method to empirically evaluate the effectiveness of the identified designs. Going beyond the traditional benchmarks with strong homophily, our empirical analysis shows that the identified designs increase the accuracy of GNNs by up to 40% and 27% over models without them on synthetic and real networks with heterophily, respectively, and yield competitive performance under homophily.
Neural Execution Engines: Learning to Execute Subroutines
Yan, Yujun, Swersky, Kevin, Koutra, Danai, Ranganathan, Parthasarathy, Hashemi, Milad
A significant effort has been made to train neural networks that replicate algorithmic reasoning, but they often fail to learn the abstract concepts underlying these algorithms. This is evidenced by their inability to generalize to data distributions that are outside of their restricted training sets, namely larger inputs and unseen data. We study these generalization issues at the level of numerical subroutines that comprise common algorithms like sorting, shortest paths, and minimum spanning trees. First, we observe that transformer-based sequence-to-sequence models can learn subroutines like sorting a list of numbers, but their performance rapidly degrades as the length of lists grows beyond those found in the training set. We demonstrate that this is due to attention weights that lose fidelity with longer sequences, particularly when the input numbers are numerically similar. To address the issue, we propose a learned conditional masking mechanism, which enables the model to strongly generalize far outside of its training range with near-perfect accuracy on a variety of algorithms. Second, to generalize to unseen data, we show that encoding numbers with a binary representation leads to embeddings with rich structure once trained on downstream tasks like addition or multiplication. This allows the embedding to handle missing data by faithfully interpolating numbers not seen during training.
Benchmarking Semi-supervised Federated Learning
Zhang, Zhengming, Yao, Zhewei, Yang, Yaoqing, Yan, Yujun, Gonzalez, Joseph E., Mahoney, Michael W.
Current state-of-the-art machine learning models can potentially benefit from the large amount of user data privately-held on mobile devices, as well as the computing power locally-available on these devices. In response to this, federated learning (FL), which only requires transmitting the trained (intermediate) models, has been proposed as a privacy-preserving solution to exploit the data and computing power on mobile devices [1, 2]. In a typical FL pipeline, a server maintains a model and shares it with users/devices. Each user/device updates the global shared model for multiple steps locally using only locally-held data, and then it uploads the updated model back to the server. After aggregating all the models from users, the server takes an averaging step over all the models (e.g., FedAvg [2]), and it then sends the averaged model back to users [1, 3]. This approach respects privacy in the (weak) sense that the server does not access the private user data at any point in the procedure. However, prior work in FL has made the unrealistic assumption that the data stored on the local device are fully annotated with ground-truth labels and that the server does not have access to any labeled data. In fact, the private data at the local device are more often unlabeled, since annotating data requires both time and domain knowledge [4, 5], and servers are often hosted by organizations that do have labeled data.