Yan, Jinyue
Context-Alignment: Activating and Enhancing LLM Capabilities in Time Series
Hu, Yuxiao, Li, Qian, Zhang, Dongxiao, Yan, Jinyue, Chen, Yuntian
Recently, leveraging pre-trained Large Language Models (LLMs) for time series (TS) tasks has gained increasing attention, which involves activating and enhancing LLMs' capabilities. Many methods aim to activate LLMs' capabilities based on token-level alignment but overlook LLMs' inherent strength on natural language processing -- their deep understanding of linguistic logic and structure rather than superficial embedding processing. We propose Context-Alignment, a new paradigm that aligns TS with a linguistic component in the language environments familiar to LLMs to enable LLMs to contextualize and comprehend TS data, thereby activating their capabilities. Specifically, such context-level alignment comprises structural alignment and logical alignment, which is achieved by a Dual-Scale Context-Alignment GNNs (DSCA-GNNs) applied to TS-language multimodal inputs. Structural alignment utilizes dual-scale nodes to describe hierarchical structure in TS-language, enabling LLMs treat long TS data as a whole linguistic component while preserving intrinsic token features. Logical alignment uses directed edges to guide logical relationships, ensuring coherence in the contextual semantics. Demonstration examples prompt are employed to construct Demonstration Examples based Context-Alignment (DECA) following DSCA-GNNs framework. DECA can be flexibly and repeatedly integrated into various layers of pre-trained LLMs to improve awareness of logic and structure, thereby enhancing performance. Extensive experiments show the effectiveness of DECA and the importance of Context-Alignment across tasks, particularly in few-shot and zero-shot forecasting, confirming that Context-Alignment provide powerful prior knowledge on context.
A Phone-based Distributed Ambient Temperature Measurement System with An Efficient Label-free Automated Training Strategy
Chen, Dayin, Shi, Xiaodan, Zhang, Haoran, Song, Xuan, Zhang, Dongxiao, Chen, Yuntian, Yan, Jinyue
Enhancing the energy efficiency of buildings significantly relies on monitoring indoor ambient temperature. The potential limitations of conventional temperature measurement techniques, together with the omnipresence of smartphones, have redirected researchers'attention towards the exploration of phone-based ambient temperature estimation methods. However, existing phone-based methods face challenges such as insufficient privacy protection, difficulty in adapting models to various phones, and hurdles in obtaining enough labeled training data. In this study, we propose a distributed phone-based ambient temperature estimation system which enables collaboration among multiple phones to accurately measure the ambient temperature in different areas of an indoor space. This system also provides an efficient, cost-effective approach with a few-shot meta-learning module and an automated label generation module. It shows that with just 5 new training data points, the temperature estimation model can adapt to a new phone and reach a good performance. Moreover, the system uses crowdsourcing to generate accurate labels for all newly collected training data, significantly reducing costs. Additionally, we highlight the potential of incorporating federated learning into our system to enhance privacy protection. We believe this study can advance the practical application of phone-based ambient temperature measurement, facilitating energy-saving efforts in buildings.
Multi-spatial Multi-temporal Air Quality Forecasting with Integrated Monitoring and Reanalysis Data
Hu, Yuxiao, Li, Qian, Shi, Xiaodan, Yan, Jinyue, Chen, Yuntian
Accurate air quality forecasting is crucial for public health, environmental monitoring and protection, and urban planning. However, existing methods fail to effectively utilize multi-scale information, both spatially and temporally. Spatially, there is a lack of integration between individual monitoring stations and city-wide scales. Temporally, the periodic nature of air quality variations is often overlooked or inadequately considered. To address these limitations, we present a novel Multi-spatial Multi-temporal air quality forecasting method based on Graph Convolutional Networks and Gated Recurrent Units (M2G2), bridging the gap in air quality forecasting across spatial and temporal scales. The proposed framework consists of two modules: Multi-scale Spatial GCN (MS-GCN) for spatial information fusion and Multi-scale Temporal GRU(MT-GRU) for temporal information integration. In the spatial dimension, the MS-GCN module employs a bidirectional learnable structure and a residual structure, enabling comprehensive information exchange between individual monitoring stations and the city-scale graph. Regarding the temporal dimension, the MT-GRU module adaptively combines information from different temporal scales through parallel hidden states. Leveraging meteorological indicators and four air quality indicators, we present comprehensive comparative analyses and ablation experiments, showcasing the higher accuracy of M2G2 in comparison to nine currently available advanced approaches across all aspects. The improvements of M2G2 over the second-best method on RMSE of the 24h/48h/72h are as follows: PM2.5: (7.72%, 6.67%, 10.45%); PM10: (6.43%, 5.68%, 7.73%); NO2: (5.07%, 7.76%, 16.60%); O3: (6.46%, 6.86%, 9.79%). Furthermore, we demonstrate the effectiveness of each module of M2G2 by ablation study.
Theory-guided hard constraint projection (HCP): a knowledge-based data-driven scientific machine learning method
Chen, Yuntian, Huang, Dou, Zhang, Dongxiao, Zeng, Junsheng, Wang, Nanzhe, Zhang, Haoran, Yan, Jinyue
Machine learning models have been successfully used in many scientific and engineering fields. However, it remains difficult for a model to simultaneously utilize domain knowledge and experimental observation data. The application of knowledge-based symbolic AI represented by an expert system is limited by the expressive ability of the model, and data-driven connectionism AI represented by neural networks is prone to produce predictions that violate physical mechanisms. In order to fully integrate domain knowledge with observations, and make full use of the prior information and the strong fitting ability of neural networks, this study proposes theory-guided hard constraint projection (HCP). This model converts physical constraints, such as governing equations, into a form that is easy to handle through discretization, and then implements hard constraint optimization through projection. Based on rigorous mathematical proofs, theory-guided HCP can ensure that model predictions strictly conform to physical mechanisms in the constraint patch. The performance of the theory-guided HCP is verified by experiments based on the heterogeneous subsurface flow problem. Due to the application of hard constraints, compared with fully connected neural networks and soft constraint models, such as theory-guided neural networks and physics-informed neural networks, theory-guided HCP requires fewer data, and achieves higher prediction accuracy and stronger robustness to noisy observations.