Yan, Jingtian
Advancing MAPF towards the Real World: A Scalable Multi-Agent Realistic Testbed (SMART)
Yan, Jingtian, Li, Zhifei, Kang, William, Zhang, Yulun, Smith, Stephen, Li, Jiaoyang
MAPF focuses on planning collision-free paths for a group of agents. While state-of-the-art MAPF algorithms can plan paths for hundreds of robots in seconds, they often rely on simplified robot models, making their real-world performance unclear. Researchers typically lack access to hundreds of physical robots in laboratory settings to evaluate the algorithms. Meanwhile, industrial professionals who lack expertise in MAPF require an easy-to-use simulator to efficiently test and understand the performance of MAPF algorithms in their specific settings. SMART fills this gap with several advantages: (1) SMART uses a physics-engine-based simulator to create realistic simulation environments, accounting for complex real-world factors such as robot kinodynamics and execution uncertainties, (2) SMART uses an execution monitor framework based on the Action Dependency Graph, facilitating seamless integration with various MAPF algorithms and robot models, and (3) SMART scales to thousands of robots. In addition, we use SMART to explore and demonstrate research questions about the execution of MAPF algorithms in real-world scenarios. The code is publicly available at https://jingtianyan.github.io/
Multi-Agent Motion Planning For Differential Drive Robots Through Stationary State Search
Yan, Jingtian, Li, Jiaoyang
Multi-Agent Motion Planning (MAMP) finds various applications in fields such as traffic management, airport operations, and warehouse automation. In many of these environments, differential drive robots are commonly used. These robots have a kinodynamic model that allows only in-place rotation and movement along their current orientation, subject to speed and acceleration limits. However, existing Multi-Agent Path Finding (MAPF)-based methods often use simplified models for robot kinodynamics, which limits their practicality and realism. In this paper, we introduce a three-level framework called MASS to address these challenges. MASS combines MAPF-based methods with our proposed stationary state search planner to generate high-quality kinodynamically-feasible plans. We further extend MASS using an adaptive window mechanism to address the lifelong MAMP problem. Empirically, we tested our methods on the single-shot grid map domain and the lifelong warehouse domain. Our method shows up to 400% improvements in terms of throughput compared to existing methods.
Multi-Agent Motion Planning with B\'ezier Curve Optimization under Kinodynamic Constraints
Yan, Jingtian, Li, Jiaoyang
Multi-Agent Motion Planning (MAMP) is a problem that seeks collision-free dynamically-feasible trajectories for multiple moving agents in a known environment while minimizing their travel time. MAMP is closely related to the well-studied Multi-Agent Path-Finding (MAPF) problem. Recently, MAPF methods have achieved great success in finding collision-free paths for a substantial number of agents. However, those methods often overlook the kinodynamic constraints of the agents, assuming instantaneous movement, which limits their practicality and realism. In this paper, we present a three-level MAPF-based planner called PSB to address the challenges posed by MAMP. PSB fully considers the kinodynamic capability of the agents and produces solutions with smooth speed profiles that can be directly executed by the controller. Empirically, we evaluate PSB within the domains of traffic intersection coordination for autonomous vehicles and obstacle-rich grid map navigation for mobile robots. PSB shows up to 49.79% improvements in solution cost compared to existing methods.