Goto

Collaborating Authors

 Yan, Fang


PathoTune: Adapting Visual Foundation Model to Pathological Specialists

arXiv.org Artificial Intelligence

As natural image understanding moves towards the pretrain-finetune era, research in pathology imaging is concurrently evolving. Despite the predominant focus on pretraining pathological foundation models, how to adapt foundation models to downstream tasks is little explored. For downstream adaptation, we propose the existence of two domain gaps, i.e., the Foundation-Task Gap and the Task-Instance Gap. To mitigate these gaps, we introduce PathoTune, a framework designed to efficiently adapt pathological or even visual foundation models to pathology-specific tasks via multi-modal prompt tuning. The proposed framework leverages Task-specific Visual Prompts and Task-specific Textual Prompts to identify task-relevant features, along with Instance-specific Visual Prompts for encoding single pathological image features. Results across multiple datasets at both patch-level and WSI-level demonstrate its superior performance over single-modality prompt tuning approaches. Significantly, PathoTune facilitates the direct adaptation of natural visual foundation models to pathological tasks, drastically outperforming pathological foundation models with simple linear probing. The code will be available upon acceptance.


PathoDuet: Foundation Models for Pathological Slide Analysis of H&E and IHC Stains

arXiv.org Artificial Intelligence

Large amounts of digitized histopathological data display a promising future for developing pathological foundation models via self-supervised learning methods. Foundation models pretrained with these methods serve as a good basis for downstream tasks. However, the gap between natural and histopathological images hinders the direct application of existing methods. In this work, we present PathoDuet, a series of pretrained models on histopathological images, and a new self-supervised learning framework in histopathology. The framework is featured by a newly-introduced pretext token and later task raisers to explicitly utilize certain relations between images, like multiple magnifications and multiple stains. Based on this, two pretext tasks, cross-scale positioning and cross-stain transferring, are designed to pretrain the model on Hematoxylin and Eosin (H\&E) images and transfer the model to immunohistochemistry (IHC) images, respectively. To validate the efficacy of our models, we evaluate the performance over a wide variety of downstream tasks, including patch-level colorectal cancer subtyping and whole slide image (WSI)-level classification in H\&E field, together with expression level prediction of IHC marker and tumor identification in IHC field. The experimental results show the superiority of our models over most tasks and the efficacy of proposed pretext tasks. The codes and models are available at https://github.com/openmedlab/PathoDuet.


Integrated Age Estimation Mechanism

arXiv.org Artificial Intelligence

Machine-learning-based age estimation has received lots of attention. Traditional age estimation mechanism focuses estimation age error, but ignores that there is a deviation between the estimated age and real age due to disease. Pathological age estimation mechanism the author proposed before introduces age deviation to solve the above problem and improves classification capability of the estimated age significantly. However,it does not consider the age estimation error of the normal control (NC) group and results in a larger error between the estimated age and real age of NC group. Therefore, an integrated age estimation mechanism based on Decision-Level fusion of error and deviation orientation model is proposed to solve the problem.Firstly, the traditional age estimation and pathological age estimation mechanisms are weighted together.Secondly, their optimal weights are obtained by minimizing mean absolute error (MAE) between the estimated age and real age of normal people. In the experimental section, several representative age-related datasets are used for verification of the proposed method. The results show that the proposed age estimation mechanism achieves a good tradeoff effect of age estimation. It not only improves the classification ability of the estimated age, but also reduces the age estimation error of the NC group. In general, the proposed age estimation mechanism is effective. Additionally, the mechanism is a framework mechanism that can be used to construct different specific age estimation algorithms, contributing to relevant research.