Yadav, Sachin
Interleaved Gibbs Diffusion for Constrained Generation
Anil, Gautham Govind, Yadav, Sachin, Nagaraj, Dheeraj, Shanmugam, Karthikeyan, Jain, Prateek
We introduce Interleaved Gibbs Diffusion (IGD), a novel generative modeling framework for mixed continuous-discrete data, focusing on constrained generation problems. Prior works on discrete and continuous-discrete diffusion models assume factorized denoising distribution for fast generation, which can hinder the modeling of strong dependencies between random variables encountered in constrained generation. IGD moves beyond this by interleaving continuous and discrete denoising algorithms via a discrete time Gibbs sampling type Markov chain. IGD provides flexibility in the choice of denoisers, allows conditional generation via state-space doubling and inference time scaling via the ReDeNoise method. Empirical evaluations on three challenging tasks-solving 3-SAT, generating molecule structures, and generating layouts-demonstrate state-of-the-art performance. Notably, IGD achieves a 7% improvement on 3-SAT out of the box and achieves state-of-the-art results in molecule generation without relying on equivariant diffusion or domain-specific architectures. We explore a wide range of modeling, and interleaving strategies along with hyperparameters in each of these problems.
Semantic Retrieval at Walmart
Magnani, Alessandro, Liu, Feng, Chaidaroon, Suthee, Yadav, Sachin, Suram, Praveen Reddy, Puthenputhussery, Ajit, Chen, Sijie, Xie, Min, Kashi, Anirudh, Lee, Tony, Liao, Ciya
In product search, the retrieval of candidate products before re-ranking is more critical and challenging than other search like web search, especially for tail queries, which have a complex and specific search intent. In this paper, we present a hybrid system for e-commerce search deployed at Walmart that combines traditional inverted index and embedding-based neural retrieval to better answer user tail queries. Our system significantly improved the relevance of the search engine, measured by both offline and online evaluations. The improvements were achieved through a combination of different approaches. We present a new technique to train the neural model at scale. and describe how the system was deployed in production with little impact on response time. We highlight multiple learnings and practical tricks that were used in the deployment of this system.
Towards Automating Text Annotation: A Case Study on Semantic Proximity Annotation using GPT-4
Yadav, Sachin, Choppa, Tejaswi, Schlechtweg, Dominik
This paper explores using GPT-3.5 and GPT-4 to automate the data annotation process with automatic prompting techniques. The main aim of this paper is to reuse human annotation guidelines along with some annotated data to design automatic prompts for LLMs, focusing on the semantic proximity annotation task. Automatic prompts are compared to customized prompts. We further implement the prompting strategies into an open-source text annotation tool, enabling easy online use via the OpenAI API. Our study reveals the crucial role of accurate prompt design and suggests that prompting GPT-4 with human-like instructions is not straightforwardly possible for the semantic proximity task. We show that small modifications to the human guidelines already improve the performance, suggesting possible ways for future research.
Large Language Models for Relevance Judgment in Product Search
Mehrdad, Navid, Mohapatra, Hrushikesh, Bagdouri, Mossaab, Chandran, Prijith, Magnani, Alessandro, Cai, Xunfan, Puthenputhussery, Ajit, Yadav, Sachin, Lee, Tony, Zhai, ChengXiang, Liao, Ciya
High relevance of retrieved and re-ranked items to the search query is the cornerstone of successful product search, yet measuring relevance of items to queries is one of the most challenging tasks in product information retrieval, and quality of product search is highly influenced by the precision and scale of available relevance-labelled data. In this paper, we present an array of techniques for leveraging Large Language Models (LLMs) for automating the relevance judgment of query-item pairs (QIPs) at scale. Using a unique dataset of multi-million QIPs, annotated by human evaluators, we test and optimize hyper parameters for finetuning billion-parameter LLMs with and without Low Rank Adaption (LoRA), as well as various modes of item attribute concatenation and prompting in LLM finetuning, and consider trade offs in item attribute inclusion for quality of relevance predictions. We demonstrate considerable improvement over baselines of prior generations of LLMs, as well as off-the-shelf models, towards relevance annotations on par with the human relevance evaluators. Our findings have immediate implications for the growing field of relevance judgment automation in product search.
Deep Gaussian Processes for Air Quality Inference
Desai, Aadesh, Gujarathi, Eshan, Parikh, Saagar, Yadav, Sachin, Patel, Zeel, Batra, Nipun
Air pollution kills around 7 million people annually, and approximately 2.4 billion people are exposed to hazardous air pollution. Accurate, fine-grained air quality (AQ) monitoring is essential to control and reduce pollution. However, AQ station deployment is sparse, and thus air quality inference for unmonitored locations is crucial. Conventional interpolation methods fail to learn the complex AQ phenomena. This work demonstrates that Deep Gaussian Process models (DGPs) are a promising model for the task of AQ inference. We implement Doubly Stochastic Variational Inference, a DGP algorithm, and show that it performs comparably to the state-of-the-art models.