Yadav, Nishant
Paraformer: Parameterization of Sub-grid Scale Processes Using Transformers
Wang, Shuochen, Yadav, Nishant, Ganguly, Auroop R.
One of the major sources of uncertainty in the current generation of Global Climate Models (GCMs) is the representation of sub-grid scale physical processes. Over the years, a series of deep-learning-based parameterization schemes have been developed and tested on both idealized and real-geography GCMs. However, datasets on which previous deep-learning models were trained either contain limited variables or have low spatial-temporal coverage, which can not fully simulate the parameterization process. Additionally, these schemes rely on classical architectures while the latest attention mechanism used in Transformer models remains unexplored in this field. In this paper, we propose Paraformer, a "memory-aware" Transformer-based model on ClimSim, the largest dataset ever created for climate parameterization. Our results demonstrate that the proposed model successfully captures the complex non-linear dependencies in the sub-grid scale variables and outperforms classical deep-learning architectures. This work highlights the applicability of the attenuation mechanism in this field and provides valuable insights for developing future deep-learning-based climate parameterization schemes.
Adaptive Retrieval and Scalable Indexing for k-NN Search with Cross-Encoders
Yadav, Nishant, Monath, Nicholas, Zaheer, Manzil, Fergus, Rob, McCallum, Andrew
Cross-encoder (CE) models which compute similarity by jointly encoding a query-item pair perform better than embedding-based models (dual-encoders) at estimating query-item relevance. Existing approaches perform k-NN search with CE by approximating the CE similarity with a vector embedding space fit either with dual-encoders (DE) or CUR matrix factorization. DE-based retrieve-and-rerank approaches suffer from poor recall on new domains and the retrieval with DE is decoupled from the CE. While CUR-based approaches can be more accurate than the DE-based approach, they require a prohibitively large number of CE calls to compute item embeddings, thus making it impractical for deployment at scale. In this paper, we address these shortcomings with our proposed sparse-matrix factorization based method that efficiently computes latent query and item embeddings to approximate CE scores and performs k-NN search with the approximate CE similarity. We compute item embeddings offline by factorizing a sparse matrix containing query-item CE scores for a set of train queries. Our method produces a high-quality approximation while requiring only a fraction of CE calls as compared to CUR-based methods, and allows for leveraging DE to initialize the embedding space while avoiding compute- and resource-intensive finetuning of DE via distillation. At test time, the item embeddings remain fixed and retrieval occurs over rounds, alternating between a) estimating the test query embedding by minimizing error in approximating CE scores of items retrieved thus far, and b) using the updated test query embedding for retrieving more items. Our k-NN search method improves recall by up to 5% (k=1) and 54% (k=100) over DE-based approaches. Additionally, our indexing approach achieves a speedup of up to 100x over CUR-based and 5x over DE distillation methods, while matching or improving k-NN search recall over baselines.
Efficient k-NN Search with Cross-Encoders using Adaptive Multi-Round CUR Decomposition
Yadav, Nishant, Monath, Nicholas, Zaheer, Manzil, McCallum, Andrew
Cross-encoder models, which jointly encode and score a query-item pair, are prohibitively expensive for direct k-nearest neighbor (k-NN) search. Consequently, k-NN search typically employs a fast approximate retrieval (e.g. using BM25 or dual-encoder vectors), followed by reranking with a cross-encoder; however, the retrieval approximation often has detrimental recall regret. This problem is tackled by ANNCUR (Yadav et al., 2022), a recent work that employs a cross-encoder only, making search efficient using a relatively small number of anchor items, and a CUR matrix factorization. While ANNCUR's one-time selection of anchors tends to approximate the cross-encoder distances on average, doing so forfeits the capacity to accurately estimate distances to items near the query, leading to regret in the crucial end-task: recall of top-k items. In this paper, we propose ADACUR, a method that adaptively, iteratively, and efficiently minimizes the approximation error for the practically important top-k neighbors. It does so by iteratively performing k-NN search using the anchors available so far, then adding these retrieved nearest neighbors to the anchor set for the next round. Empirically, on multiple datasets, in comparison to previous traditional and state-of-the-art methods such as ANNCUR and dual-encoder-based retrieve-and-rerank, our proposed approach ADACUR consistently reduces recall error-by up to 70% on the important k = 1 setting-while using no more compute than its competitors.
Supervised Hierarchical Clustering with Exponential Linkage
Yadav, Nishant, Kobren, Ari, Monath, Nicholas, McCallum, Andrew
In supervised clustering, standard techniques for learning a pairwise dissimilarity function often suffer from a discrepancy between the training and clustering objectives, leading to poor cluster quality. Rectifying this discrepancy necessitates matching the procedure for training the dissimilarity function to the clustering algorithm. In this paper, we introduce a method for training the dissimilarity function in a way that is tightly coupled with hierarchical clustering, in particular single linkage. However, the appropriate clustering algorithm for a given dataset is often unknown. Thus we introduce an approach to supervised hierarchical clustering that smoothly interpolates between single, average, and complete linkage, and we give a training procedure that simultaneously learns a linkage function and a dissimilarity function. We accomplish this with a novel Exponential Linkage function that has a learnable parameter that controls the interpolation. In experiments on four datasets, our joint training procedure consistently matches or outperforms the next best training procedure/linkage function pair and gives up to 8 points improvement in dendrogram purity over discrepant pairs.