Goto

Collaborating Authors

 Yada, Shuntaro


LLM-jp: A Cross-organizational Project for the Research and Development of Fully Open Japanese LLMs

arXiv.org Artificial Intelligence

This paper introduces LLM-jp, a cross-organizational project for the research and development of Japanese large language models (LLMs). LLM-jp aims to develop open-source and strong Japanese LLMs, and as of this writing, more than 1,500 participants from academia and industry are working together for this purpose. This paper presents the background of the establishment of LLM-jp, summaries of its activities, and technical reports on the LLMs developed by LLM-jp.


A Dataset for Pharmacovigilance in German, French, and Japanese: Annotating Adverse Drug Reactions across Languages

arXiv.org Artificial Intelligence

User-generated data sources have gained significance in uncovering Adverse Drug Reactions (ADRs), with an increasing number of discussions occurring in the digital world. However, the existing clinical corpora predominantly revolve around scientific articles in English. This work presents a multilingual corpus of texts concerning ADRs gathered from diverse sources, including patient fora, social media, and clinical reports in German, French, and Japanese. Our corpus contains annotations covering 12 entity types, four attribute types, and 13 relation types. It contributes to the development of real-world multilingual language models for healthcare. We provide statistics to highlight certain challenges associated with the corpus and conduct preliminary experiments resulting in strong baselines for extracting entities and relations between these entities, both within and across languages.


JaMIE: A Pipeline Japanese Medical Information Extraction System

arXiv.org Artificial Intelligence

We present an open-access natural language processing toolkit for Japanese medical information extraction. We first propose a novel relation annotation schema for investigating the medical and temporal relations between medical entities in Japanese medical reports. We experiment with the practical annotation scenarios by separately annotating two different types of reports. We design a pipeline system with three components for recognizing medical entities, classifying entity modalities, and extracting relations. The empirical results show accurate analyzing performance and suggest the satisfactory annotation quality, the effective annotation strategy for targeting report types, and the superiority of the latest contextual embedding models.