Xue, Tianfan
FuseGrasp: Radar-Camera Fusion for Robotic Grasping of Transparent Objects
Deng, Hongyu, Xue, Tianfan, Chen, He
Transparent objects are prevalent in everyday environments, but their distinct physical properties pose significant challenges for camera-guided robotic arms. Current research is mainly dependent on camera-only approaches, which often falter in suboptimal conditions, such as low-light environments. In response to this challenge, we present FuseGrasp, the first radar-camera fusion system tailored to enhance the transparent objects manipulation. FuseGrasp exploits the weak penetrating property of millimeter-wave (mmWave) signals, which causes transparent materials to appear opaque, and combines it with the precise motion control of a robotic arm to acquire high-quality mmWave radar images of transparent objects. The system employs a carefully designed deep neural network to fuse radar and camera imagery, thereby improving depth completion and elevating the success rate of object grasping. Nevertheless, training FuseGrasp effectively is non-trivial, due to limited radar image datasets for transparent objects. We address this issue utilizing large RGB-D dataset, and propose an effective two-stage training approach: we first pre-train FuseGrasp on a large public RGB-D dataset of transparent objects, then fine-tune it on a self-built small RGB-D-Radar dataset. Furthermore, as a byproduct, FuseGrasp can determine the composition of transparent objects, such as glass or plastic, leveraging the material identification capability of mmWave radar. This identification result facilitates the robotic arm in modulating its grip force appropriately. Extensive testing reveals that FuseGrasp significantly improves the accuracy of depth reconstruction and material identification for transparent objects. Moreover, real-world robotic trials have confirmed that FuseGrasp markedly enhances the handling of transparent items. A video demonstration of FuseGrasp is available at https://youtu.be/MWDqv0sRSok.
PhoCoLens: Photorealistic and Consistent Reconstruction in Lensless Imaging
Cai, Xin, You, Zhiyuan, Zhang, Hailong, Liu, Wentao, Gu, Jinwei, Xue, Tianfan
Lensless cameras offer significant advantages in size, weight, and cost compared to traditional lens-based systems. Without a focusing lens, lensless cameras rely on computational algorithms to recover the scenes from multiplexed measurements. However, current algorithms struggle with inaccurate forward imaging models and insufficient priors to reconstruct high-quality images. To overcome these limitations, we introduce a novel two-stage approach for consistent and photorealistic lensless image reconstruction. The first stage of our approach ensures data consistency by focusing on accurately reconstructing the low-frequency content with a spatially varying deconvolution method that adjusts to changes in the Point Spread Function (PSF) across the camera's field of view. The second stage enhances photorealism by incorporating a generative prior from pre-trained diffusion models. By conditioning on the low-frequency content retrieved in the first stage, the diffusion model effectively reconstructs the high-frequency details that are typically lost in the lensless imaging process, while also maintaining image fidelity. Our method achieves a superior balance between data fidelity and visual quality compared to existing methods, as demonstrated with two popular lensless systems, PhlatCam and DiffuserCam.
GenNBV: Generalizable Next-Best-View Policy for Active 3D Reconstruction
Chen, Xiao, Li, Quanyi, Wang, Tai, Xue, Tianfan, Pang, Jiangmiao
While recent advances in neural radiance field enable realistic digitization for large-scale scenes, the image-capturing process is still time-consuming and labor-intensive. Previous works attempt to automate this process using the Next-Best-View (NBV) policy for active 3D reconstruction. However, the existing NBV policies heavily rely on hand-crafted criteria, limited action space, or per-scene optimized representations. These constraints limit their cross-dataset generalizability. To overcome them, we propose GenNBV, an end-to-end generalizable NBV policy. Our policy adopts a reinforcement learning (RL)-based framework and extends typical limited action space to 5D free space. It empowers our agent drone to scan from any viewpoint, and even interact with unseen geometries during training. To boost the cross-dataset generalizability, we also propose a novel multi-source state embedding, including geometric, semantic, and action representations. We establish a benchmark using the Isaac Gym simulator with the Houses3K and OmniObject3D datasets to evaluate this NBV policy. Experiments demonstrate that our policy achieves a 98.26% and 97.12% coverage ratio on unseen building-scale objects from these datasets, respectively, outperforming prior solutions.
EmbodiedScan: A Holistic Multi-Modal 3D Perception Suite Towards Embodied AI
Wang, Tai, Mao, Xiaohan, Zhu, Chenming, Xu, Runsen, Lyu, Ruiyuan, Li, Peisen, Chen, Xiao, Zhang, Wenwei, Chen, Kai, Xue, Tianfan, Liu, Xihui, Lu, Cewu, Lin, Dahua, Pang, Jiangmiao
In the realm of computer vision and robotics, embodied agents are expected to explore their environment and carry out human instructions. This necessitates the ability to fully understand 3D scenes given their first-person observations and contextualize them into language for interaction. However, traditional research focuses more on scene-level input and output setups from a global view. To address the gap, we introduce EmbodiedScan, a multi-modal, ego-centric 3D perception dataset and benchmark for holistic 3D scene understanding. It encompasses over 5k scans encapsulating 1M ego-centric RGB-D views, 1M language prompts, 160k 3D-oriented boxes spanning over 760 categories, some of which partially align with LVIS, and dense semantic occupancy with 80 common categories. Building upon this database, we introduce a baseline framework named Embodied Perceptron. It is capable of processing an arbitrary number of multi-modal inputs and demonstrates remarkable 3D perception capabilities, both within the two series of benchmarks we set up, i.e., fundamental 3D perception tasks and language-grounded tasks, and in the wild. Codes, datasets, and benchmarks will be available at https://github.com/OpenRobotLab/EmbodiedScan.
Text-to-3D Generation with Bidirectional Diffusion using both 2D and 3D priors
Ding, Lihe, Dong, Shaocong, Huang, Zhanpeng, Wang, Zibin, Zhang, Yiyuan, Gong, Kaixiong, Xu, Dan, Xue, Tianfan
Most 3D generation research focuses on up-projecting 2D foundation models into the 3D space, either by minimizing 2D Score Distillation Sampling (SDS) loss or fine-tuning on multi-view datasets. Without explicit 3D priors, these methods often lead to geometric anomalies and multi-view inconsistency. Recently, researchers have attempted to improve the genuineness of 3D objects by directly training on 3D datasets, albeit at the cost of low-quality texture generation due to the limited texture diversity in 3D datasets. To harness the advantages of both approaches, we propose Bidirectional Diffusion(BiDiff), a unified framework that incorporates both a 3D and a 2D diffusion process, to preserve both 3D fidelity and 2D texture richness, respectively. Moreover, as a simple combination may yield inconsistent generation results, we further bridge them with novel bidirectional guidance. In addition, our method can be used as an initialization of optimization-based models to further improve the quality of 3D model and efficiency of optimization, reducing the generation process from 3.4 hours to 20 minutes. Experimental results have shown that our model achieves high-quality, diverse, and scalable 3D generation. Project website: https://bidiff.github.io/.
Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks
Xue, Tianfan, Wu, Jiajun, Bouman, Katherine L., Freeman, William T.
We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods that have tackled this problem in a deterministic or non-parametric way, we propose to model future frames in a probabilistic manner. Our probabilistic model makes it possible for us to sample and synthesize many possible future frames from a single input image. To synthesize realistic movement of objects, we propose a novel network structure, namely a Cross Convolutional Network; this network encodes image and motion information as feature maps and convolutional kernels, respectively. In experiments, our model performs well on synthetic data, such as 2D shapes and animated game sprites, and on real-world video frames. We present analyses of the learned network representations, showing it is implicitly learning a compact encoding of object appearance and motion. We also demonstrate a few of its applications, including visual analogy-making and video extrapolation.
MarrNet: 3D Shape Reconstruction via 2.5D Sketches
Wu, Jiajun, Wang, Yifan, Xue, Tianfan, Sun, Xingyuan, Freeman, Bill, Tenenbaum, Josh
3D object reconstruction from a single image is a highly under-determined problem, requiring strong prior knowledge of plausible 3D shapes. This introduces challenge for learning-based approaches, as 3D object annotations in real images are scarce. Previous work chose to train on synthetic data with ground truth 3D information, but suffered from the domain adaptation issue when tested on real data. In this work, we propose an end-to-end trainable framework, sequentially estimating 2.5D sketches and 3D object shapes. Our disentangled, two-step formulation has three advantages. First, compared to full 3D shape, 2.5D sketches are much easier to be recovered from a 2D image, and to transfer from synthetic to real data. Second, for 3D reconstruction from the 2.5D sketches, we can easily transfer the learned model on synthetic data to real images, as rendered 2.5D sketches are invariant to object appearance variations in real images, including lighting, texture, etc. This further relieves the domain adaptation problem. Third, we derive differentiable projective functions from 3D shape to 2.5D sketches, making the framework end-to-end trainable on real images, requiring no real-image annotations. Our framework achieves state-of-the-art performance on 3D shape reconstruction.
Visual Dynamics: Probabilistic Future Frame Synthesis via Cross Convolutional Networks
Xue, Tianfan, Wu, Jiajun, Bouman, Katherine, Freeman, Bill
We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods, which have tackled this problem in a deterministic or non-parametric way, we propose a novel approach which models future frames in a probabilistic manner. Our proposed method is therefore able to synthesize multiple possible next frames using the same model. Solving this challenging problem involves low- and high-level image and motion understanding for successful image synthesis. Here, we propose a novel network structure, namely a Cross Convolutional Network, that encodes images as feature maps and motion information as convolutional kernels to aid in synthesizing future frames. In experiments, our model performs well on both synthetic data, such as 2D shapes and animated game sprites, as well as on real-wold video data. We show that our model can also be applied to tasks such as visual analogy-making, and present analysis of the learned network representations.
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Wu, Jiajun, Zhang, Chengkai, Xue, Tianfan, Freeman, Bill, Tenenbaum, Josh
We study the problem of 3D object generation. We propose a novel framework, namely 3D Generative Adversarial Network (3D-GAN), which generates 3D objects from a probabilistic space by leveraging recent advances in volumetric convolutional networks and generative adversarial nets. The benefits of our model are three-fold: first, the use of an adversarial criterion, instead of traditional heuristic criteria, enables the generator to capture object structure implicitly and to synthesize high-quality 3D objects; second, the generator establishes a mapping from a low-dimensional probabilistic space to the space of 3D objects, so that we can sample objects without a reference image or CAD models, and explore the 3D object manifold; third, the adversarial discriminator provides a powerful 3D shape descriptor which, learned without supervision, has wide applications in 3D object recognition. Experiments demonstrate that our method generates high-quality 3D objects, and our unsupervisedly learned features achieve impressive performance on 3D object recognition, comparable with those of supervised learning methods.