Xue, Liumeng
YuE: Scaling Open Foundation Models for Long-Form Music Generation
Yuan, Ruibin, Lin, Hanfeng, Guo, Shuyue, Zhang, Ge, Pan, Jiahao, Zang, Yongyi, Liu, Haohe, Liang, Yiming, Ma, Wenye, Du, Xingjian, Du, Xinrun, Ye, Zhen, Zheng, Tianyu, Ma, Yinghao, Liu, Minghao, Tian, Zeyue, Zhou, Ziya, Xue, Liumeng, Qu, Xingwei, Li, Yizhi, Wu, Shangda, Shen, Tianhao, Ma, Ziyang, Zhan, Jun, Wang, Chunhui, Wang, Yatian, Chi, Xiaowei, Zhang, Xinyue, Yang, Zhenzhu, Wang, Xiangzhou, Liu, Shansong, Mei, Lingrui, Li, Peng, Wang, Junjie, Yu, Jianwei, Pang, Guojian, Li, Xu, Wang, Zihao, Zhou, Xiaohuan, Yu, Lijun, Benetos, Emmanouil, Chen, Yong, Lin, Chenghua, Chen, Xie, Xia, Gus, Zhang, Zhaoxiang, Zhang, Chao, Chen, Wenhu, Zhou, Xinyu, Qiu, Xipeng, Dannenberg, Roger, Liu, Jiaheng, Yang, Jian, Huang, Wenhao, Xue, Wei, Tan, Xu, Guo, Yike
We tackle the task of long-form music generation--particularly the challenging \textbf{lyrics-to-song} problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation
Spark-TTS: An Efficient LLM-Based Text-to-Speech Model with Single-Stream Decoupled Speech Tokens
Wang, Xinsheng, Jiang, Mingqi, Ma, Ziyang, Zhang, Ziyu, Liu, Songxiang, Li, Linqin, Liang, Zheng, Zheng, Qixi, Wang, Rui, Feng, Xiaoqin, Bian, Weizhen, Ye, Zhen, Cheng, Sitong, Yuan, Ruibin, Zhao, Zhixian, Zhu, Xinfa, Pan, Jiahao, Xue, Liumeng, Zhu, Pengcheng, Chen, Yunlin, Li, Zhifei, Chen, Xie, Xie, Lei, Guo, Yike, Xue, Wei
Recent advancements in large language models (LLMs) have driven significant progress in zero-shot text-to-speech (TTS) synthesis. However, existing foundation models rely on multi-stage processing or complex architectures for predicting multiple codebooks, limiting efficiency and integration flexibility. To overcome these challenges, we introduce Spark-TTS, a novel system powered by BiCodec, a single-stream speech codec that decomposes speech into two complementary token types: low-bitrate semantic tokens for linguistic content and fixed-length global tokens for speaker attributes. This disentangled representation, combined with the Qwen2.5 LLM and a chain-of-thought (CoT) generation approach, enables both coarse-grained control (e.g., gender, speaking style) and fine-grained adjustments (e.g., precise pitch values, speaking rate). To facilitate research in controllable TTS, we introduce VoxBox, a meticulously curated 100,000-hour dataset with comprehensive attribute annotations. Extensive experiments demonstrate that Spark-TTS not only achieves state-of-the-art zero-shot voice cloning but also generates highly customizable voices that surpass the limitations of reference-based synthesis. Source code, pre-trained models, and audio samples are available at https://github.com/SparkAudio/Spark-TTS.
Audio-FLAN: A Preliminary Release
Xue, Liumeng, Zhou, Ziya, Pan, Jiahao, Li, Zixuan, Fan, Shuai, Ma, Yinghao, Cheng, Sitong, Yang, Dongchao, Guo, Haohan, Xiao, Yujia, Wang, Xinsheng, Shen, Zixuan, Zhu, Chuanbo, Zhang, Xinshen, Liu, Tianchi, Yuan, Ruibin, Tian, Zeyue, Liu, Haohe, Benetos, Emmanouil, Zhang, Ge, Guo, Yike, Xue, Wei
Recent advancements in audio tokenization have significantly enhanced the integration of audio capabilities into large language models (LLMs). However, audio understanding and generation are often treated as distinct tasks, hindering the development of truly unified audio-language models. While instruction tuning has demonstrated remarkable success in improving generalization and zero-shot learning across text and vision, its application to audio remains largely unexplored. A major obstacle is the lack of comprehensive datasets that unify audio understanding and generation. To address this, we introduce Audio-FLAN, a large-scale instruction-tuning dataset covering 80 diverse tasks across speech, music, and sound domains, with over 100 million instances. Audio-FLAN lays the foundation for unified audio-language models that can seamlessly handle both understanding (e.g., transcription, comprehension) and generation (e.g., speech, music, sound) tasks across a wide range of audio domains in a zero-shot manner. The Audio-FLAN dataset is available on HuggingFace and GitHub and will be continuously updated.
Llasa: Scaling Train-Time and Inference-Time Compute for Llama-based Speech Synthesis
Ye, Zhen, Zhu, Xinfa, Chan, Chi-Min, Wang, Xinsheng, Tan, Xu, Lei, Jiahe, Peng, Yi, Liu, Haohe, Jin, Yizhu, DAI, Zheqi, Lin, Hongzhan, Chen, Jianyi, Du, Xingjian, Xue, Liumeng, Chen, Yunlin, Li, Zhifei, Xie, Lei, Kong, Qiuqiang, Guo, Yike, Xue, Wei
Recent advances in text-based large language models (LLMs), particularly in the GPT series and the o1 model, have demonstrated the effectiveness of scaling both training-time and inference-time compute. However, current state-of-the-art TTS systems leveraging LLMs are often multi-stage, requiring separate models (e.g., diffusion models after LLM), complicating the decision of whether to scale a particular model during training or testing. This work makes the following contributions: First, we explore the scaling of train-time and inference-time compute for speech synthesis. Second, we propose a simple framework Llasa for speech synthesis that employs a single-layer vector quantizer (VQ) codec and a single Transformer architecture to fully align with standard LLMs such as Llama. Our experiments reveal that scaling train-time compute for Llasa consistently improves the naturalness of synthesized speech and enables the generation of more complex and accurate prosody patterns. Furthermore, from the perspective of scaling inference-time compute, we employ speech understanding models as verifiers during the search, finding that scaling inference-time compute shifts the sampling modes toward the preferences of specific verifiers, thereby improving emotional expressiveness, timbre consistency, and content accuracy. In addition, we released the checkpoint and training code for our TTS model (1B, 3B, 8B) and codec model publicly available.
The ISCSLP 2024 Conversational Voice Clone (CoVoC) Challenge: Tasks, Results and Findings
Xia, Kangxiang, Guo, Dake, Yao, Jixun, Xue, Liumeng, Li, Hanzhao, Wang, Shuai, Guo, Zhao, Xie, Lei, Zhang, Qingqing, Luo, Lei, Dong, Minghui, Sun, Peng
The ISCSLP 2024 Conversational Voice Clone (CoVoC) Challenge aims to benchmark and advance zero-shot spontaneous style voice cloning, particularly focusing on generating spontaneous behaviors in conversational speech. The challenge comprises two tracks: an unconstrained track without limitation on data and model usage, and a constrained track only allowing the use of constrained open-source datasets. A 100-hour high-quality conversational speech dataset is also made available with the challenge. This paper details the data, tracks, submitted systems, evaluation results, and findings.
ChatMusician: Understanding and Generating Music Intrinsically with LLM
Yuan, Ruibin, Lin, Hanfeng, Wang, Yi, Tian, Zeyue, Wu, Shangda, Shen, Tianhao, Zhang, Ge, Wu, Yuhang, Liu, Cong, Zhou, Ziya, Ma, Ziyang, Xue, Liumeng, Wang, Ziyu, Liu, Qin, Zheng, Tianyu, Li, Yizhi, Ma, Yinghao, Liang, Yiming, Chi, Xiaowei, Liu, Ruibo, Wang, Zili, Li, Pengfei, Wu, Jingcheng, Lin, Chenghua, Liu, Qifeng, Jiang, Tao, Huang, Wenhao, Chen, Wenhu, Benetos, Emmanouil, Fu, Jie, Xia, Gus, Dannenberg, Roger, Xue, Wei, Kang, Shiyin, Guo, Yike
While Large Language Models (LLMs) demonstrate impressive capabilities in text generation, we find that their ability has yet to be generalized to music, humanity's creative language. We introduce ChatMusician, an open-source LLM that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language. ChatMusician can understand and generate music with a pure text tokenizer without any external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score. Our model is capable of composing well-structured, full-length music, conditioned on texts, chords, melodies, motifs, musical forms, etc, surpassing GPT-4 baseline. On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 on zero-shot setting by a noticeable margin. Our work reveals that LLMs can be an excellent compressor for music, but there remains significant territory to be conquered. We release our 4B token music-language corpora MusicPile, the collected MusicTheoryBench, code, model and demo in GitHub.
Transfer the linguistic representations from TTS to accent conversion with non-parallel data
Chen, Xi, Pei, Jiakun, Xue, Liumeng, Zhang, Mingyang
Accent conversion aims to convert the accent of a source speech to a target accent, meanwhile preserving the speaker's identity. This paper introduces a novel non-autoregressive framework for accent conversion that learns accent-agnostic linguistic representations and employs them to convert the accent in the source speech. Specifically, the proposed system aligns speech representations with linguistic representations obtained from Text-to-Speech (TTS) systems, enabling training of the accent voice conversion model on non-parallel data. Furthermore, we investigate the effectiveness of a pretraining strategy on native data and different acoustic features within our proposed framework. We conduct a comprehensive evaluation using both subjective and objective metrics to assess the performance of our approach. The evaluation results highlight the benefits of the pretraining strategy and the incorporation of richer semantic features, resulting in significantly enhanced audio quality and intelligibility.