Goto

Collaborating Authors

 Xue, Jingyuan


Survival Analysis with Machine Learning for Predicting Li-ion Battery Remaining Useful Life

arXiv.org Artificial Intelligence

The accurate prediction of RUL for lithium-ion batteries is crucial for enhancing the reliability and longevity of energy storage systems. Traditional methods for RUL prediction often struggle with issues such as data sparsity, varying battery chemistries, and the inability to capture complex degradation patterns over time. In this study, we propose a survival analysis-based framework combined with deep learning models to predict the RUL of lithium-ion batteries. Specifically, we utilize five advanced models: the Cox-type models (Cox, CoxPH, and CoxTime) and two machine-learning-based models (DeepHit and MTLR). These models address the challenges of accurate RUL estimation by transforming raw time-series battery data into survival data, including key degradation indicators such as voltage, current, and internal resistance. Advanced feature extraction techniques enhance the model's robustness in diverse real-world scenarios, including varying charging conditions and battery chemistries. Our models are tested using 10-fold cross-validation, ensuring generalizability and minimizing overfitting. Experimental results show that our survival-based framework significantly improves RUL prediction accuracy compared to traditional methods, providing a reliable tool for battery management and maintenance optimization. This study contributes to the advancement of predictive maintenance in battery technology, offering valuable insights for both researchers and industry practitioners aiming to enhance the operational lifespan of lithium-ion batteries.


Evaluating the Generation Capabilities of Large Chinese Language Models

arXiv.org Artificial Intelligence

This paper unveils CG-Eval, the first-ever comprehensive and automated evaluation framework designed for assessing the generative capabilities of large Chinese language models across a spectrum of academic disciplines. CG-Eval stands out for its automated process, which critically assesses models based on their proficiency in generating precise and contextually relevant responses to a diverse array of questions within six key domains: Science and Engineering, Humanities and Social Sciences, Mathematical Calculations, Medical Practitioner Qualification Examination, Judicial Examination, and Certified Public Accountant Examination. Alongside this, we introduce Gscore, an innovative composite index developed from a weighted sum of multiple metrics. Gscore uniquely automates the quality measurement of a model's text generation against reference standards, providing a detailed and nuanced assessment of model performance. This automation not only enhances the efficiency and scalability of the evaluation process but also ensures objective and consistent assessment across various models. The detailed test data and results, highlighting the robust capabilities and comparative performance of the evaluated models, are accessible at http://cgeval.besteasy.com/.