Goto

Collaborating Authors

 Xue, Hui


SNRAware: Improved Deep Learning MRI Denoising with SNR Unit Training and G-factor Map Augmentation

arXiv.org Artificial Intelligence

Purpose To develop and evaluate a new deep learning MR denoising method that leverages quantitative noise distribution information from the reconstruction process to improve denoising performance and generalization. Methods This retrospective study trained 14 different transformer and convolutional models with two backbone architectures on a large dataset of 2,885,236 images from 96,605 cardiac retro-gated cine complex series acquired at 3T. The proposed training scheme, termed SNRAware, leverages knowledge of the MRI reconstruction process to improve denoising performance by (1) simulating large, high quality, and diverse synthetic datasets, and (2) providing quantitative information about the noise distribution to the model. In-distribution testing was performed on a hold-out dataset of 3000 samples with performance measured using PSNR and SSIM, with ablation comparison without the noise augmentation. Out-of-distribution tests were conducted on cardiac real-time cine, first-pass cardiac perfusion, and neuro and spine MRI, all acquired at 1.5T, to test model generalization across imaging sequences, dynamically changing contrast, different anatomies, and field strengths. Results The in-distribution tests showed that SNRAware training resulted in the best performance for all 14 models tested, better than those trained without the proposed synthetic data generation process or knowledge of the noise distribution. Models trained without any reconstruction knowledge were the most inferior. The improvement was architecture agnostic and shown for both convolution and transformer attention-based models; among them, the transformer models outperformed their convolutional counterparts and training with 3D input tensors improved performance over only using 2D images. The best model found in the in-distribution test generalized well to out-of-distribution samples, delivering 6.5 and 2.9 CNR improvement for real-time cine and perfusion imaging, respectively.


QExplorer: Large Language Model Based Query Extraction for Toxic Content Exploration

arXiv.org Artificial Intelligence

Automatically extracting effective queries is challenging in information retrieval, especially in toxic content exploration, as such content is likely to be disguised. With the recent achievements in generative Large Language Model (LLM), we are able to leverage the capabilities of LLMs to extract effective queries for similar content exploration directly. This study proposes QExplorer, an approach of large language model based Query Extraction for toxic content Exploration. The QExplorer approach involves a 2-stage training process: instruction Supervised FineTuning (SFT) and preference alignment using Direct Preference Optimization (DPO), as well as the datasets construction with feedback of search system. To verify the effectiveness of QExplorer, a series of offline and online experiments are conducted on our real-world system. The offline empirical results demonstrate that the performance of our automatic query extraction outperforms that of several LLMs and humans. The online deployment shows a significant increase in the detection of toxic items.


Mirage in the Eyes: Hallucination Attack on Multi-modal Large Language Models with Only Attention Sink

arXiv.org Artificial Intelligence

Fusing visual understanding into language generation, Multi-modal Large Language Models (MLLMs) are revolutionizing visual-language applications. Yet, these models are often plagued by the hallucination problem, which involves generating inaccurate objects, attributes, and relationships that do not match the visual content. In this work, we delve into the internal attention mechanisms of MLLMs to reveal the underlying causes of hallucination, exposing the inherent vulnerabilities in the instruction-tuning process. We propose a novel hallucination attack against MLLMs that exploits attention sink behaviors to trigger hallucinated content with minimal image-text relevance, posing a significant threat to critical downstream applications. Distinguished from previous adversarial methods that rely on fixed patterns, our approach generates dynamic, effective, and highly transferable visual adversarial inputs, without sacrificing the quality of model responses. Comprehensive experiments on 6 prominent MLLMs demonstrate the efficacy of our attack in compromising black-box MLLMs even with extensive mitigating mechanisms, as well as the promising results against cutting-edge commercial APIs, such as GPT-4o and Gemini 1.5. Our code is available at https://huggingface.co/RachelHGF/Mirage-in-the-Eyes.


Jailbreaking Multimodal Large Language Models via Shuffle Inconsistency

arXiv.org Artificial Intelligence

Multimodal Large Language Models (MLLMs) have achieved impressive performance and have been put into practical use in commercial applications, but they still have potential safety mechanism vulnerabilities. Jailbreak attacks are red teaming methods that aim to bypass safety mechanisms and discover MLLMs' potential risks. Existing MLLMs' jailbreak methods often bypass the model's safety mechanism through complex optimization methods or carefully designed image and text prompts. Despite achieving some progress, they have a low attack success rate on commercial closed-source MLLMs. Unlike previous research, we empirically find that there exists a Shuffle Inconsistency between MLLMs' comprehension ability and safety ability for the shuffled harmful instruction. That is, from the perspective of comprehension ability, MLLMs can understand the shuffled harmful text-image instructions well. However, they can be easily bypassed by the shuffled harmful instructions from the perspective of safety ability, leading to harmful responses. Then we innovatively propose a text-image jailbreak attack named SI-Attack. Specifically, to fully utilize the Shuffle Inconsistency and overcome the shuffle randomness, we apply a query-based black-box optimization method to select the most harmful shuffled inputs based on the feedback of the toxic judge model. A series of experiments show that SI-Attack can improve the attack's performance on three benchmarks. In particular, SI-Attack can obviously improve the attack success rate for commercial MLLMs such as GPT-4o or Claude-3.5-Sonnet.


MRJ-Agent: An Effective Jailbreak Agent for Multi-Round Dialogue

arXiv.org Artificial Intelligence

Large Language Models (LLMs) demonstrate outstanding performance in their reservoir of knowledge and understanding capabilities, but they have also been shown to be prone to illegal or unethical reactions when subjected to jailbreak attacks. To ensure their responsible deployment in critical applications, it is crucial to understand the safety capabilities and vulnerabilities of LLMs. Previous works mainly focus on jailbreak in single-round dialogue, overlooking the potential jailbreak risks in multi-round dialogues, which are a vital way humans interact with and extract information from LLMs. Some studies have increasingly concentrated on the risks associated with jailbreak in multi-round dialogues. These efforts typically involve the use of manually crafted templates or prompt engineering techniques. However, due to the inherent complexity of multi-round dialogues, their jailbreak performance is limited. To solve this problem, we propose a novel multi-round dialogue jailbreaking agent, emphasizing the importance of stealthiness in identifying and mitigating potential threats to human values posed by LLMs. We propose a risk decomposition strategy that distributes risks across multiple rounds of queries and utilizes psychological strategies to enhance attack strength. Extensive experiments show that our proposed method surpasses other attack methods and achieves state-of-the-art attack success rate. We will make the corresponding code and dataset available for future research. The code will be released soon.


A Study on Context Length and Efficient Transformers for Biomedical Image Analysis

arXiv.org Artificial Intelligence

Biomedical imaging modalities often produce high-resolution, multi-dimensional images that pose computational challenges for deep neural networks. These computational challenges are compounded when training transformers due to the self-attention operator, which scales quadratically with context length. Recent developments in long-context models have potential to alleviate these difficulties and enable more efficient application of transformers to large biomedical images, although a systematic evaluation on this topic is lacking. In this study, we investigate the impact of context length on biomedical image analysis and we evaluate the performance of recently proposed long-context models. We first curate a suite of biomedical imaging datasets, including 2D and 3D data for segmentation, denoising, and classification tasks. We then analyze the impact of context length on network performance using the Vision Transformer and Swin Transformer by varying patch size and attention window size. Our findings reveal a strong relationship between context length and performance, particularly for pixel-level prediction tasks. Finally, we show that recent long-context models demonstrate significant improvements in efficiency while maintaining comparable performance, though we highlight where gaps remain. This work underscores the potential and challenges of using long-context models in biomedical imaging.


PEARL: Input-Agnostic Prompt Enhancement with Negative Feedback Regulation for Class-Incremental Learning

arXiv.org Artificial Intelligence

Class-incremental learning (CIL) aims to continuously introduce novel categories into a classification system without forgetting previously learned ones, thus adapting to evolving data distributions. Researchers are currently focusing on leveraging the rich semantic information of pre-trained models (PTMs) in CIL tasks. Prompt learning has been adopted in CIL for its ability to adjust data distribution to better align with pre-trained knowledge. This paper critically examines the limitations of existing methods from the perspective of prompt learning, which heavily rely on input information. To address this issue, we propose a novel PTM-based CIL method called Input-Agnostic Prompt Enhancement with Negative Feedback Regulation (PEARL). In PEARL, we implement an input-agnostic global prompt coupled with an adaptive momentum update strategy to reduce the model's dependency on data distribution, thereby effectively mitigating catastrophic forgetting. Guided by negative feedback regulation, this adaptive momentum update addresses the parameter sensitivity inherent in fixed-weight momentum updates. Furthermore, it fosters the continuous enhancement of the prompt for new tasks by harnessing correlations between different tasks in CIL. Experiments on six benchmarks demonstrate that our method achieves state-of-the-art performance. The code is available at: https://github.com/qinyongchun/PEARL.


On Distilling the Displacement Knowledge for Few-Shot Class-Incremental Learning

arXiv.org Artificial Intelligence

Few-shot Class-Incremental Learning (FSCIL) addresses the challenges of evolving data distributions and the difficulty of data acquisition in real-world scenarios. To counteract the catastrophic forgetting typically encountered in FSCIL, knowledge distillation is employed as a way to maintain the knowledge from learned data distribution. Recognizing the limitations of generating discriminative feature representations in a few-shot context, our approach incorporates structural information between samples into knowledge distillation. This structural information serves as a remedy for the low quality of features. Diverging from traditional structured distillation methods that compute sample similarity, we introduce the Displacement Knowledge Distillation (DKD) method. DKD utilizes displacement rather than similarity between samples, incorporating both distance and angular information to significantly enhance the information density retained through knowledge distillation. Observing performance disparities in feature distribution between base and novel classes, we propose the Dual Distillation Network (DDNet). This network applies traditional knowledge distillation to base classes and DKD to novel classes, challenging the conventional integration of novel classes with base classes. Additionally, we implement an instance-aware sample selector during inference to dynamically adjust dual branch weights, thereby leveraging the complementary strengths of each approach. Extensive testing on three benchmarks demonstrates that DDNet achieves state-of-the-art results. Moreover, through rigorous experimentation and comparison, we establish the robustness and general applicability of our proposed DKD method.


SVasP: Self-Versatility Adversarial Style Perturbation for Cross-Domain Few-Shot Learning

arXiv.org Artificial Intelligence

Cross-Domain Few-Shot Learning (CD-FSL) aims to transfer knowledge from seen source domains to unseen target domains, which is crucial for evaluating the generalization and robustness of models. Recent studies focus on utilizing visual styles to bridge the domain gap between different domains. However, the serious dilemma of gradient instability and local optimization problem occurs in those style-based CD-FSL methods. This paper addresses these issues and proposes a novel crop-global style perturbation method, called \underline{\textbf{S}}elf-\underline{\textbf{V}}ersatility \underline{\textbf{A}}dversarial \underline{\textbf{S}}tyle \underline{\textbf{P}}erturbation (\textbf{SVasP}), which enhances the gradient stability and escapes from poor sharp minima jointly. Specifically, SVasP simulates more diverse potential target domain adversarial styles via diversifying input patterns and aggregating localized crop style gradients, to serve as global style perturbation stabilizers within one image, a concept we refer to as self-versatility. Then a novel objective function is proposed to maximize visual discrepancy while maintaining semantic consistency between global, crop, and adversarial features. Having the stabilized global style perturbation in the training phase, one can obtain a flattened minima in the loss landscape, boosting the transferability of the model to the target domains. Extensive experiments on multiple benchmark datasets demonstrate that our method significantly outperforms existing state-of-the-art methods. Our codes are available at https://github.com/liwenqianSEU/SVasP.


fairBERTs: Erasing Sensitive Information Through Semantic and Fairness-aware Perturbations

arXiv.org Artificial Intelligence

Pre-trained language models (PLMs) have revolutionized both the natural language processing research and applications. However, stereotypical biases (e.g., gender and racial discrimination) encoded in PLMs have raised negative ethical implications for PLMs, which critically limits their broader applications. To address the aforementioned unfairness issues, we present fairBERTs, a general framework for learning fair fine-tuned BERT series models by erasing the protected sensitive information via semantic and fairness-aware perturbations generated by a generative adversarial network. Through extensive qualitative and quantitative experiments on two real-world tasks, we demonstrate the great superiority of fairBERTs in mitigating unfairness while maintaining the model utility. We also verify the feasibility of transferring adversarial components in fairBERTs to other conventionally trained BERT-like models for yielding fairness improvements. Our findings may shed light on further research on building fairer fine-tuned PLMs.