Goto

Collaborating Authors

 Xue, Bing


Evolutionary Computation for the Design and Enrichment of General-Purpose Artificial Intelligence Systems: Survey and Prospects

arXiv.org Artificial Intelligence

In Artificial Intelligence, there is an increasing demand for adaptive models capable of dealing with a diverse spectrum of learning tasks, surpassing the limitations of systems devised to cope with a single task. The recent emergence of General-Purpose Artificial Intelligence Systems (GPAIS) poses model configuration and adaptability challenges at far greater complexity scales than the optimal design of traditional Machine Learning models. Evolutionary Computation (EC) has been a useful tool for both the design and optimization of Machine Learning models, endowing them with the capability to configure and/or adapt themselves to the task under consideration. Therefore, their application to GPAIS is a natural choice. This paper aims to analyze the role of EC in the field of GPAIS, exploring the use of EC for their design or enrichment. We also match GPAIS properties to Machine Learning areas in which EC has had a notable contribution, highlighting recent milestones of EC for GPAIS. Furthermore, we discuss the challenges of harnessing the benefits of EC for GPAIS, presenting different strategies to both design and improve GPAIS with EC, covering tangential areas, identifying research niches, and outlining potential research directions for EC and GPAIS.


Sharpness-Aware Minimization for Evolutionary Feature Construction in Regression

arXiv.org Artificial Intelligence

In recent years, genetic programming (GP)-based evolutionary feature construction has achieved significant success. However, a primary challenge with evolutionary feature construction is its tendency to overfit the training data, resulting in poor generalization on unseen data. In this research, we draw inspiration from PAC-Bayesian theory and propose using sharpness-aware minimization in function space to discover symbolic features that exhibit robust performance within a smooth loss landscape in the semantic space. By optimizing sharpness in conjunction with cross-validation loss, as well as designing a sharpness reduction layer, the proposed method effectively mitigates the overfitting problem of GP, especially when dealing with a limited number of instances or in the presence of label noise. Experimental results on 58 real-world regression datasets show that our approach outperforms standard GP as well as six state-of-the-art complexity measurement methods for GP in controlling overfitting. Furthermore, the ensemble version of GP with sharpness-aware minimization demonstrates superior performance compared to nine fine-tuned machine learning and symbolic regression algorithms, including XGBoost and LightGBM.


Predicting postoperative risks using large language models

arXiv.org Artificial Intelligence

Predicting postoperative risk can inform effective care management & planning. We explored large language models (LLMs) in predicting postoperative risk through clinical texts using various tuning strategies. Records spanning 84,875 patients from Barnes Jewish Hospital (BJH) between 2018 & 2021, with a mean duration of follow-up based on the length of postoperative ICU stay less than 7 days, were utilized. Methods were replicated on the MIMIC-III dataset. Outcomes included 30-day mortality, pulmonary embolism (PE) & pneumonia. Three domain adaptation & finetuning strategies were implemented for three LLMs (BioGPT, ClinicalBERT & BioClinicalBERT): self-supervised objectives; incorporating labels with semi-supervised fine-tuning; & foundational modelling through multi-task learning. Model performance was compared using the AUROC & AUPRC for classification tasks & MSE & R2 for regression tasks. Cohort had a mean age of 56.9 (sd: 16.8) years; 50.3% male; 74% White. Pre-trained LLMs outperformed traditional word embeddings, with absolute maximal gains of 38.3% for AUROC & 14% for AUPRC. Adapting models through self-supervised finetuning further improved performance by 3.2% for AUROC & 1.5% for AUPRC Incorporating labels into the finetuning procedure further boosted performances, with semi-supervised finetuning improving by 1.8% for AUROC & 2% for AUPRC & foundational modelling improving by 3.6% for AUROC & 2.6% for AUPRC compared to self-supervised finetuning. Pre-trained clinical LLMs offer opportunities for postoperative risk predictions with unseen data, & further improvements from finetuning suggests benefits in adapting pre-trained models to note-specific perioperative use cases. Incorporating labels can further boost performance. The superior performance of foundational models suggests the potential of task-agnostic learning towards the generalizable LLMs in perioperative care.


Genetic Programming for Explainable Manifold Learning

arXiv.org Artificial Intelligence

Manifold learning techniques play a pivotal role in machine learning by revealing lower-dimensional embeddings within high-dimensional data, thus enhancing both the efficiency and interpretability of data analysis by transforming the data into a lower-dimensional representation. However, a notable challenge with current manifold learning methods is their lack of explicit functional mappings, crucial for explainability in many real-world applications. Genetic programming, known for its interpretable functional tree-based models, has emerged as a promising approach to address this challenge. Previous research leveraged multi-objective GP to balance manifold quality against embedding dimensionality, producing functional mappings across a range of embedding sizes. Yet, these mapping trees often became complex, hindering explainability. In response, in this paper, we introduce Genetic Programming for Explainable Manifold Learning (GP-EMaL), a novel approach that directly penalises tree complexity. Our new method is able to maintain high manifold quality while significantly enhancing explainability and also allows customisation of complexity measures, such as symmetry balancing, scaling, and node complexity, catering to diverse application needs. Our experimental analysis demonstrates that GP-EMaL is able to match the performance of the existing approach in most cases, while using simpler, smaller, and more interpretable tree structures. This advancement marks a significant step towards achieving interpretable manifold learning.


Fast and Efficient Local Search for Genetic Programming Based Loss Function Learning

arXiv.org Artificial Intelligence

In this paper, we develop upon the topic of loss function learning, an emergent meta-learning paradigm that aims to learn loss functions that significantly improve the performance of the models trained under them. Specifically, we propose a new meta-learning framework for task and model-agnostic loss function learning via a hybrid search approach. The framework first uses genetic programming to find a set of symbolic loss functions. Second, the set of learned loss functions is subsequently parameterized and optimized via unrolled differentiation. The versatility and performance of the proposed framework are empirically validated on a diverse set of supervised learning tasks. Results show that the learned loss functions bring improved convergence, sample efficiency, and inference performance on tabulated, computer vision, and natural language processing problems, using a variety of task-specific neural network architectures.


A Consistent Lebesgue Measure for Multi-label Learning

arXiv.org Artificial Intelligence

Multi-label loss functions are usually non-differentiable, requiring surrogate loss functions for gradient-based optimisation. The consistency of surrogate loss functions is not proven and is exacerbated by the conflicting nature of multi-label loss functions. To directly learn from multiple related, yet potentially conflicting multi-label loss functions, we propose a Consistent Lebesgue Measure-based Multi-label Learner (CLML) and prove that CLML can achieve theoretical consistency under a Bayes risk framework. Empirical evidence supports our theory by demonstrating that: (1) CLML can consistently achieve state-of-the-art results; (2) the primary performance factor is the Lebesgue measure design, as CLML optimises a simpler feedforward model without additional label graph, perturbation-based conditioning, or semantic embeddings; and (3) an analysis of the results not only distinguishes CLML's effectiveness but also highlights inconsistencies between the surrogate and the desired loss functions.


Improving Buoy Detection with Deep Transfer Learning for Mussel Farm Automation

arXiv.org Artificial Intelligence

The aquaculture sector in New Zealand is experiencing rapid expansion, with a particular emphasis on mussel exports. As the demands of mussel farming operations continue to evolve, the integration of artificial intelligence and computer vision techniques, such as intelligent object detection, is emerging as an effective approach to enhance operational efficiency. This study delves into advancing buoy detection by leveraging deep learning methodologies for intelligent mussel farm monitoring and management. The primary objective centers on improving accuracy and robustness in detecting buoys across a spectrum of real-world scenarios. A diverse dataset sourced from mussel farms is captured and labeled for training, encompassing imagery taken from cameras mounted on both floating platforms and traversing vessels, capturing various lighting and weather conditions. To establish an effective deep learning model for buoy detection with a limited number of labeled data, we employ transfer learning techniques. This involves adapting a pre-trained object detection model to create a specialized deep learning buoy detection model. We explore different pre-trained models, including YOLO and its variants, alongside data diversity to investigate their effects on model performance. Our investigation demonstrates a significant enhancement in buoy detection performance through deep learning, accompanied by improved generalization across diverse weather conditions, highlighting the practical effectiveness of our approach.


Assisting Clinical Decisions for Scarcely Available Treatment via Disentangled Latent Representation

arXiv.org Artificial Intelligence

Extracorporeal membrane oxygenation (ECMO) is an essential life-supporting modality for COVID-19 patients who are refractory to conventional therapies. However, the proper treatment decision has been the subject of significant debate and it remains controversial about who benefits from this scarcely available and technically complex treatment option. To support clinical decisions, it is a critical need to predict the treatment need and the potential treatment and no-treatment responses. Targeting this clinical challenge, we propose Treatment Variational AutoEncoder (TVAE), a novel approach for individualized treatment analysis. TVAE is specifically designed to address the modeling challenges like ECMO with strong treatment selection bias and scarce treatment cases. TVAE conceptualizes the treatment decision as a multi-scale problem. We model a patient's potential treatment assignment and the factual and counterfactual outcomes as part of their intrinsic characteristics that can be represented by a deep latent variable model. The factual and counterfactual prediction errors are alleviated via a reconstruction regularization scheme together with semi-supervision, and the selection bias and the scarcity of treatment cases are mitigated by the disentangled and distribution-matched latent space and the label-balancing generative strategy. We evaluate TVAE on two real-world COVID-19 datasets: an international dataset collected from 1651 hospitals across 63 countries, and a institutional dataset collected from 15 hospitals. The results show that TVAE outperforms state-of-the-art treatment effect models in predicting both the propensity scores and factual outcomes on heterogeneous COVID-19 datasets. Additional experiments also show TVAE outperforms the best existing models in individual treatment effect estimation on the synthesized IHDP benchmark dataset.


Learning Symbolic Model-Agnostic Loss Functions via Meta-Learning

arXiv.org Artificial Intelligence

In this paper, we develop upon the emerging topic of loss function learning, which aims to learn loss functions that significantly improve the performance of the models trained under them. Specifically, we propose a new meta-learning framework for learning model-agnostic loss functions via a hybrid neuro-symbolic search approach. The framework first uses evolution-based methods to search the space of primitive mathematical operations to find a set of symbolic loss functions. Second, the set of learned loss functions are subsequently parameterized and optimized via an end-to-end gradient-based training procedure. The versatility of the proposed framework is empirically validated on a diverse set of supervised learning tasks. Results show that the meta-learned loss functions discovered by the newly proposed method outperform both the cross-entropy loss and state-of-the-art loss function learning methods on a diverse range of neural network architectures and datasets.


Online Loss Function Learning

arXiv.org Artificial Intelligence

Loss function learning is a new meta-learning paradigm that aims to automate the essential task of designing a loss function for a machine learning model. Existing techniques for loss function learning have shown promising results, often improving a model's training dynamics and final inference performance. However, a significant limitation of these techniques is that the loss functions are meta-learned in an offline fashion, where the meta-objective only considers the very first few steps of training, which is a significantly shorter time horizon than the one typically used for training deep neural networks. This causes significant bias towards loss functions that perform well at the very start of training but perform poorly at the end of training. To address this issue we propose a new loss function learning technique for adaptively updating the loss function online after each update to the base model parameters. The experimental results show that our proposed method consistently outperforms the cross-entropy loss and offline loss function learning techniques on a diverse range of neural network architectures and datasets.