Not enough data to create a plot.
Try a different view from the menu above.
Xue, Anton
On The Concurrence of Layer-wise Preconditioning Methods and Provable Feature Learning
Zhang, Thomas T., Moniri, Behrad, Nagwekar, Ansh, Rahman, Faraz, Xue, Anton, Hassani, Hamed, Matni, Nikolai
Layer-wise preconditioning methods are a family of memory-efficient optimization algorithms that introduce preconditioners per axis of each layer's weight tensors. These methods have seen a recent resurgence, demonstrating impressive performance relative to entry-wise ("diagonal") preconditioning methods such as Adam(W) on a wide range of neural network optimization tasks. Complementary to their practical performance, we demonstrate that layer-wise preconditioning methods are provably necessary from a statistical perspective. To showcase this, we consider two prototypical models, linear representation learning and single-index learning, which are widely used to study how typical algorithms efficiently learn useful features to enable generalization. In these problems, we show SGD is a suboptimal feature learner when extending beyond ideal isotropic inputs $\mathbf{x} \sim \mathsf{N}(\mathbf{0}, \mathbf{I})$ and well-conditioned settings typically assumed in prior work. We demonstrate theoretically and numerically that this suboptimality is fundamental, and that layer-wise preconditioning emerges naturally as the solution. We further show that standard tools like Adam preconditioning and batch-norm only mildly mitigate these issues, supporting the unique benefits of layer-wise preconditioning.
The FIX Benchmark: Extracting Features Interpretable to eXperts
Jin, Helen, Havaldar, Shreya, Kim, Chaehyeon, Xue, Anton, You, Weiqiu, Qu, Helen, Gatti, Marco, Hashimoto, Daniel A, Jain, Bhuvnesh, Madani, Amin, Sako, Masao, Ungar, Lyle, Wong, Eric
Feature-based methods are commonly used to explain model predictions, but these methods often implicitly assume that interpretable features are readily available. However, this is often not the case for high-dimensional data, and it can be hard even for domain experts to mathematically specify which features are important. Can we instead automatically extract collections or groups of features that are aligned with expert knowledge? To address this gap, we present FIX (Features Interpretable to eXperts), a benchmark for measuring how well a collection of features aligns with expert knowledge. In collaboration with domain experts, we propose FIXScore, a unified expert alignment measure applicable to diverse real-world settings across cosmology, psychology, and medicine domains in vision, language, and time series data modalities. With FIXScore, we find that popular feature-based explanation methods have poor alignment with expert-specified knowledge, highlighting the need for new methods that can better identify features interpretable to experts.
AR-Pro: Counterfactual Explanations for Anomaly Repair with Formal Properties
Ji, Xiayan, Xue, Anton, Wong, Eric, Sokolsky, Oleg, Lee, Insup
Anomaly detection is widely used for identifying critical errors and suspicious behaviors, but current methods lack interpretability. We leverage common properties of existing methods and recent advances in generative models to introduce counterfactual explanations for anomaly detection. Given an input, we generate its counterfactual as a diffusion-based repair that shows what a non-anomalous version should have looked like. A key advantage of this approach is that it enables a domain-independent formal specification of explainability desiderata, offering a unified framework for generating and evaluating explanations. We demonstrate the effectiveness of our anomaly explainability framework, AR-Pro, on vision (MVTec, VisA) and time-series (SWaT, WADI, HAI) anomaly datasets. The code used for the experiments is accessible at: https://github.com/xjiae/arpro.
Logicbreaks: A Framework for Understanding Subversion of Rule-based Inference
Xue, Anton, Khare, Avishree, Alur, Rajeev, Goel, Surbhi, Wong, Eric
We study how to subvert language models from following the rules. We model rule-following as inference in propositional Horn logic, a mathematical system in which rules have the form "if $P$ and $Q$, then $R$" for some propositions $P$, $Q$, and $R$. We prove that although transformers can faithfully abide by such rules, maliciously crafted prompts can nevertheless mislead even theoretically constructed models. Empirically, we find that attacks on our theoretical models mirror popular attacks on large language models. Our work suggests that studying smaller theoretical models can help understand the behavior of large language models in rule-based settings like logical reasoning and jailbreak attacks.
Chordal Sparsity for SDP-based Neural Network Verification
Xue, Anton, Lindemann, Lars, Alur, Rajeev
Neural networks are central to many emerging technologies, but verifying their correctness remains a major challenge. It is known that network outputs can be sensitive and fragile to even small input perturbations, thereby increasing the risk of unpredictable and undesirable behavior. Fast and accurate verification of neural networks is therefore critical to their widespread adoption, and in recent years, various methods have been developed as a response to this problem. In this paper, we focus on improving semidefinite programming (SDP) based techniques for neural network verification. Such techniques offer the power of expressing complex geometric constraints while retaining a convex problem formulation, but scalability remains a major issue in practice. Our starting point is the DeepSDP framework proposed by Fazlyab et al., which uses quadratic constraints to abstract the verification problem into a large-scale SDP. However, solving this SDP quickly becomes intractable when the network grows. Our key observation is that by leveraging chordal sparsity, we can decompose the primary computational bottleneck of DeepSDP -- a large linear matrix inequality (LMI) -- into an equivalent collection of smaller LMIs. We call our chordally sparse optimization program Chordal-DeepSDP and prove that its construction is identically expressive as that of DeepSDP. Moreover, we show that additional analysis of Chordal-DeepSDP allows us to further rewrite its collection of LMIs in a second level of decomposition that we call Chordal-DeepSDP-2 -- which results in another significant computational gain. Finally, we provide numerical experiments on real networks of learned cart-pole dynamics, showcasing the computational advantage of Chordal-DeepSDP and Chordal-DeepSDP-2 over DeepSDP.
Chordal Sparsity for Lipschitz Constant Estimation of Deep Neural Networks
Xue, Anton, Lindemann, Lars, Robey, Alexander, Hassani, Hamed, Pappas, George J., Alur, Rajeev
Lipschitz constants of neural networks allow for guarantees of robustness in image classification, safety in controller design, and generalizability beyond the training data. As calculating Lipschitz constants is NP-hard, techniques for estimating Lipschitz constants must navigate the trade-off between scalability and accuracy. In this work, we significantly push the scalability frontier of a semidefinite programming technique known as LipSDP while achieving zero accuracy loss. We first show that LipSDP has chordal sparsity, which allows us to derive a chordally sparse formulation that we call Chordal-LipSDP. The key benefit is that the main computational bottleneck of LipSDP, a large semidefinite constraint, is now decomposed into an equivalent collection of smaller ones: allowing Chordal-LipSDP to outperform LipSDP particularly as the network depth grows. Moreover, our formulation uses a tunable sparsity parameter that enables one to gain tighter estimates without incurring a significant computational cost. We illustrate the scalability of our approach through extensive numerical experiments.
Stability Guarantees for Feature Attributions with Multiplicative Smoothing
Xue, Anton, Alur, Rajeev, Wong, Eric
Explanation methods for machine learning models tend not to provide any formal guarantees and may not reflect the underlying decision-making process. In this work, we analyze stability as a property for reliable feature attribution methods. We prove that relaxed variants of stability are guaranteed if the model is sufficiently Lipschitz with respect to the masking of features. We develop a smoothing method called Multiplicative Smoothing (MuS) to achieve such a model. We show that MuS overcomes the theoretical limitations of standard smoothing techniques and can be integrated with any classifier and feature attribution method. We evaluate MuS on vision and language models with various feature attribution methods, such as LIME and SHAP, and demonstrate that MuS endows feature attributions with non-trivial stability guarantees.