Xu, Yumo
Fine-Grained Natural Language Inference Based Faithfulness Evaluation for Diverse Summarisation Tasks
Zhang, Huajian, Xu, Yumo, Perez-Beltrachini, Laura
We study existing approaches to leverage off-the-shelf Natural Language Inference (NLI) models for the evaluation of summary faithfulness and argue that these are sub-optimal due to the granularity level considered for premises and hypotheses. That is, the smaller content unit considered as hypothesis is a sentence and premises are made up of a fixed number of document sentences. We propose a novel approach, namely InFusE, that uses a variable premise size and simplifies summary sentences into shorter hypotheses. Departing from previous studies which focus on single short document summarisation, we analyse NLI based faithfulness evaluation for diverse summarisation tasks. We introduce DiverSumm, a new benchmark comprising long form summarisation (long documents and summaries) and diverse summarisation tasks (e.g., meeting and multi-document summarisation). In experiments, InFusE obtains superior performance across the different summarisation tasks. Our code and data are available at https://github.com/HJZnlp/infuse.
QTSumm: Query-Focused Summarization over Tabular Data
Zhao, Yilun, Qi, Zhenting, Nan, Linyong, Mi, Boyu, Liu, Yixin, Zou, Weijin, Han, Simeng, Chen, Ruizhe, Tang, Xiangru, Xu, Yumo, Radev, Dragomir, Cohan, Arman
People primarily consult tables to conduct data analysis or answer specific questions. Text generation systems that can provide accurate table summaries tailored to users' information needs can facilitate more efficient access to relevant data insights. Motivated by this, we define a new query-focused table summarization task, where text generation models have to perform human-like reasoning and analysis over the given table to generate a tailored summary. We introduce a new benchmark named QTSumm for this task, which contains 7,111 human-annotated query-summary pairs over 2,934 tables covering diverse topics. We investigate a set of strong baselines on QTSumm, including text generation, table-to-text generation, and large language models. Experimental results and manual analysis reveal that the new task presents significant challenges in table-to-text generation for future research. Moreover, we propose a new approach named ReFactor, to retrieve and reason over query-relevant information from tabular data to generate several natural language facts. Experimental results demonstrate that ReFactor can bring improvements to baselines by concatenating the generated facts to the model input. Our data and code are publicly available at https://github.com/yale-nlp/QTSumm.
Tackling Query-Focused Summarization as A Knowledge-Intensive Task: A Pilot Study
Zhang, Weijia, Vakulenko, Svitlana, Rajapakse, Thilina, Xu, Yumo, Kanoulas, Evangelos
Query-focused summarization (QFS) requires generating a summary given a query using a set of relevant documents. However, such relevant documents should be annotated manually and thus are not readily available in realistic scenarios. To address this limitation, we tackle the QFS task as a knowledge-intensive (KI) task without access to any relevant documents. Instead, we assume that these documents are present in a large-scale knowledge corpus and should be retrieved first. To explore this new setting, we build a new dataset (KI-QFS) by adapting existing QFS datasets. In this dataset, answering the query requires document retrieval from a knowledge corpus. We construct three different knowledge corpora, and we further provide relevance annotations to enable retrieval evaluation. Finally, we benchmark the dataset with state-of-the-art QFS models and retrieval-enhanced models. The experimental results demonstrate that QFS models perform significantly worse on KI-QFS compared to the original QFS task, indicating that the knowledge-intensive setting is much more challenging and offers substantial room for improvement. We believe that our investigation will inspire further research into addressing QFS in more realistic scenarios.