Goto

Collaborating Authors

 Xu, Yixing


T\'yr-the-Pruner: Unlocking Accurate 50% Structural Pruning for LLMs via Global Sparsity Distribution Optimization

arXiv.org Artificial Intelligence

Structural pruning enhances hardware-agnostic inference efficiency for large language models (LLMs) but often struggles to maintain performance. Local pruning performs efficient layer-by-layer compression but ignores global topology. Global pruning has the potential to find the optimal solution although resource-intensive. However, existing methods tend to rank structural saliency uniformly, ignoring inter-structure dependencies and failing to achieve end-to-end optimization. To address these limitations, we propose T\'yr-the-Pruner, an efficient end-to-end search-based global structural pruning framework. This framework constructs a supernet by repeatedly applying local pruning across a range of sparsity ratios to each layer in an LLM, with the core goal of determining the optimal sparsity distribution under a target overall sparsity ratio. Concretely, we introduce an effective local pruning and an expectation error accumulation approach to improve supernet construction. Furthermore, we employ an iterative prune-and-search strategy with coarse-to-fine sparsity granularity to ensure efficient search convergence. Experimental results show that T\'yr-the-Pruner achieves state-of-the-art structural pruning, retaining 97% of the dense model's performance while removing a challenging 50% of Llama-3.1-70B's parameters.


Gumiho: A Hybrid Architecture to Prioritize Early Tokens in Speculative Decoding

arXiv.org Artificial Intelligence

Speculative decoding (SPD) aims to accelerate the auto-regressive token generation process of a target Large Language Model (LLM). Some approaches employ a draft model with multiple heads to predict a sequence of future tokens, where each head handles a token in the sequence. The target LLM verifies the predicted sequence and accepts aligned tokens, enabling efficient multi-token generation. However, existing methods assume that all tokens within a sequence are equally important, employing identical head structures and relying on a single-generation paradigm, either serial or parallel. To this end, we theoretically demonstrate that initial tokens in the draft sequence are more important than later ones. Building on this insight, we propose Gumiho, a hybrid model combining serial and parallel heads. Specifically, given the critical importance of early tokens, we employ a sophisticated Transformer architecture for the early draft heads in a serial configuration to improve accuracy. For later tokens, we utilize multiple lightweight MLP heads operating in parallel to enhance efficiency. By allocating more advanced model structures and longer running times to the early heads, Gumiho achieves improved overall performance. The experimental results demonstrate that our method outperforms existing approaches, fully validating its effectiveness.


Optimizing Ride-Pooling Operations with Extended Pickup and Drop-Off Flexibility

arXiv.org Artificial Intelligence

The Ride-Pool Matching Problem (RMP) is central to on-demand ride-pooling services, where vehicles must be matched with multiple requests while adhering to service constraints such as pickup delays, detour limits, and vehicle capacity. Most existing RMP solutions assume passengers are picked up and dropped off at their original locations, neglecting the potential for passengers to walk to nearby spots to meet vehicles. This assumption restricts the optimization potential in ride-pooling operations. In this paper, we propose a novel matching method that incorporates extended pickup and drop-off areas for passengers. We first design a tree-based approach to efficiently generate feasible matches between passengers and vehicles. Next, we optimize vehicle routes to cover all designated pickup and drop-off locations while minimizing total travel distance. Finally, we employ dynamic assignment strategies to achieve optimal matching outcomes. Experiments on city-scale taxi datasets demonstrate that our method improves the number of served requests by up to 13\% and average travel distance by up to 21\% compared to leading existing solutions, underscoring the potential of leveraging passenger mobility to significantly enhance ride-pooling service efficiency.


Jakiro: Boosting Speculative Decoding with Decoupled Multi-Head via MoE

arXiv.org Artificial Intelligence

Speculative decoding (SD) accelerates large language model inference by using a smaller draft model to predict multiple tokens, which are then verified in parallel by the larger target model. However, the limited capacity of the draft model often necessitates tree-based sampling to improve prediction accuracy, where multiple candidates are generated at each step. We identify a key limitation in this approach: the candidates at the same step are derived from the same representation, limiting diversity and reducing overall effectiveness. To address this, we propose Jakiro, leveraging Mixture of Experts (MoE), where independent experts generate diverse predictions, effectively decoupling correlations among candidates. Furthermore, we introduce a hybrid inference strategy, combining autoregressive decoding for initial tokens with parallel decoding for subsequent stages, and enhance the latter with contrastive mechanism in features to improve accuracy. Our method significantly boosts prediction accuracy and achieves higher inference speedups. Extensive experiments across diverse models validate the effectiveness and robustness of our approach, establishing a new SOTA in speculative decoding. Our codes are available at https://github.com/haiduo/Jakiro.


MSWA: Refining Local Attention with Multi-ScaleWindow Attention

arXiv.org Artificial Intelligence

Transformer-based LLMs have achieved exceptional performance across a wide range of NLP tasks. However, the standard self-attention mechanism suffers from quadratic time complexity and linearly increased cache size. Sliding window attention (SWA) solves this problem by restricting the attention range to a fixed-size local context window. Nevertheless, SWA employs a uniform window size for each head in each layer, making it inefficient in capturing context of varying scales. To mitigate this limitation, we propose Multi-Scale Window Attention (MSWA) which applies diverse window sizes across heads and layers in the Transformer. It not only allows for different window sizes among heads within the same layer but also progressively increases window size allocation from shallow to deep layers, thus enabling the model to capture contextual information with different lengths and distances. Experimental results on language modeling and common-sense reasoning tasks substantiate that MSWA outperforms traditional local attention in both effectiveness and efficiency.


A Survey on Visual Transformer

arXiv.org Artificial Intelligence

Transformer is a type of deep neural network mainly based on self-attention mechanism which is originally applied in natural language processing field. Inspired by the strong representation ability of transformer, researchers propose to extend transformer for computer vision tasks. Transformer-based models show competitive and even better performance on various visual benchmarks compared to other network types such as convolutional networks and recurrent networks. With high performance and without inductive bias defined by human, transformer is receiving more and more attention from the visual community. In this paper we provide a literature review of these visual transformer models by categorizing them in different tasks and analyze the advantages and disadvantages of these methods. In particular, the main categories include the basic image classification, high-level vision, low-level vision and video processing. The self-attention in computer vision is also briefly revisited as self-attention is the base component in transformer. Efficient transformer methods are included for pushing transformer into real applications on the devices. Finally, we give a discussion about the challenges and further research directions for visual transformers.


DC-NAS: Divide-and-Conquer Neural Architecture Search

arXiv.org Machine Learning

Most applications demand high-performance deep neural architectures costing limited resources. Neural architecture searching is a way of automatically exploring optimal deep neural networks in a given huge search space. However, all sub-networks are usually evaluated using the same criterion; that is, early stopping on a small proportion of the training dataset, which is an inaccurate and highly complex approach. In contrast to conventional methods, here we present a divide-and-conquer (DC) approach to effectively and efficiently search deep neural architectures. Given an arbitrary search space, we first extract feature representations of all sub-networks according to changes in parameters or output features of each layer, and then calculate the similarity between two different sampled networks based on the representations. Then, a k-means clustering is conducted to aggregate similar architectures into the same cluster, separately executing sub-network evaluation in each cluster. The best architecture in each cluster is later merged to obtain the optimal neural architecture. Experimental results conducted on several benchmarks illustrate that DC-NAS can overcome the inaccurate evaluation problem, achieving a $75.1\%$ top-1 accuracy on the ImageNet dataset, which is higher than that of state-of-the-art methods using the same search space.


Positive-Unlabeled Compression on the Cloud

arXiv.org Machine Learning

Many attempts have been done to extend the great success of convolutional neural networks (CNNs) achieved on high-end GPU servers to portable devices such as smart phones. Providing compression and acceleration service of deep learning models on the cloud is therefore of significance and is attractive for end users. However, existing network compression and acceleration approaches usually fine-tuning the svelte model by requesting the entire original training data (\eg ImageNet), which could be more cumbersome than the network itself and cannot be easily uploaded to the cloud. In this paper, we present a novel positive-unlabeled (PU) setting for addressing this problem. In practice, only a small portion of the original training set is required as positive examples and more useful training examples can be obtained from the massive unlabeled data on the cloud through a PU classifier with an attention based multi-scale feature extractor. We further introduce a robust knowledge distillation (RKD) scheme to deal with the class imbalance problem of these newly augmented training examples. The superiority of the proposed method is verified through experiments conducted on the benchmark models and datasets. We can use only $8\%$ of uniformly selected data from the ImageNet to obtain an efficient model with comparable performance to the baseline ResNet-34.