Goto

Collaborating Authors

 Xu, Yihong


VaViM and VaVAM: Autonomous Driving through Video Generative Modeling

arXiv.org Artificial Intelligence

We explore the potential of large-scale generative video models for autonomous driving, introducing an open-source auto-regressive video model (VaViM) and its companion video-action model (VaVAM) to investigate how video pre-training transfers to real-world driving. VaViM is a simple auto-regressive video model that predicts frames using spatio-temporal token sequences. We show that it captures the semantics and dynamics of driving scenes. VaVAM, the video-action model, leverages the learned representations of VaViM to generate driving trajectories through imitation learning. Together, the models form a complete perception-to-action pipeline. We evaluate our models in open- and closed-loop driving scenarios, revealing that video-based pre-training holds promise for autonomous driving. Key insights include the semantic richness of the learned representations, the benefits of scaling for video synthesis, and the complex relationship between model size, data, and safety metrics in closed-loop evaluations. We release code and model weights at https://github.com/valeoai/VideoActionModel


PPT: Pre-Training with Pseudo-Labeled Trajectories for Motion Forecasting

arXiv.org Artificial Intelligence

Motion forecasting (MF) for autonomous driving aims at anticipating trajectories of surrounding agents in complex urban scenarios. In this work, we investigate a mixed strategy in MF training that first pre-train motion forecasters on pseudo-labeled data, then fine-tune them on annotated data. To obtain pseudo-labeled trajectories, we propose a simple pipeline that leverages off-the-shelf single-frame 3D object detectors and non-learning trackers. The whole pre-training strategy including pseudo-labeling is coined as PPT. Our extensive experiments demonstrate that: (1) combining PPT with supervised fine-tuning on annotated data achieves superior performance on diverse testbeds, especially under annotation-efficient regimes, (2) scaling up to multiple datasets improves the previous state-of-the-art and (3) PPT helps enhance cross-dataset generalization. Our findings showcase PPT as a promising pre-training solution for robust motion forecasting in diverse autonomous driving contexts.


Valeo4Cast: A Modular Approach to End-to-End Forecasting

arXiv.org Artificial Intelligence

Motion forecasting is crucial in autonomous driving systems to anticipate the future trajectories of surrounding agents such as pedestrians, vehicles, and traffic signals. In end-to-end forecasting, the model must jointly detect from sensor data (cameras or LiDARs) the position and past trajectories of the different elements of the scene and predict their future location. We depart from the current trend of tackling this task via end-to-end training from perception to forecasting and we use a modular approach instead. Following a recent study, we individually build and train detection, tracking, and forecasting modules. We then only use consecutive finetuning steps to integrate the modules better and alleviate compounding errors. Our study reveals that this simple yet effective approach significantly improves performance on the end-to-end forecasting benchmark. Consequently, our solution ranks first in the Argoverse 2 end-to-end Forecasting Challenge held at CVPR 2024 Workshop on Autonomous Driving (WAD), with 63.82 mAPf. We surpass forecasting results by +17.1 points over last year's winner and by +13.3 points over this year's runner-up. This remarkable performance in forecasting can be explained by our modular paradigm, which integrates finetuning strategies and significantly outperforms the end-to-end-trained counterparts.


Towards Motion Forecasting with Real-World Perception Inputs: Are End-to-End Approaches Competitive?

arXiv.org Artificial Intelligence

Motion forecasting is crucial in enabling autonomous vehicles to anticipate the future trajectories of surrounding agents. To do so, it requires solving mapping, detection, tracking, and then forecasting problems, in a multi-step pipeline. In this complex system, advances in conventional forecasting methods have been made using curated data, i.e., with the assumption of perfect maps, detection, and tracking. This paradigm, however, ignores any errors from upstream modules. Meanwhile, an emerging end-to-end paradigm, that tightly integrates the perception and forecasting architectures into joint training, promises to solve this issue. So far, however, the evaluation protocols between the two methods were incompatible and their comparison was not possible. In fact, and perhaps surprisingly, conventional forecasting methods are usually not trained nor tested in real-world pipelines (e.g., with upstream detection, tracking, and mapping modules). In this work, we aim to bring forecasting models closer to real-world deployment. First, we propose a unified evaluation pipeline for forecasting methods with real-world perception inputs, allowing us to compare the performance of conventional and end-to-end methods for the first time. Second, our in-depth study uncovers a substantial performance gap when transitioning from curated to perception-based data. In particular, we show that this gap (1) stems not only from differences in precision but also from the nature of imperfect inputs provided by perception modules, and that (2) is not trivially reduced by simply finetuning on perception outputs. Based on extensive experiments, we provide recommendations for critical areas that require improvement and guidance towards more robust motion forecasting in the real world. We will release an evaluation library to benchmark models under standardized and practical conditions.