Goto

Collaborating Authors

 Xu, Yao


Cosmos-Reason1: From Physical Common Sense To Embodied Reasoning

arXiv.org Artificial Intelligence

Physical AI systems need to perceive, understand, and perform complex actions in the physical world. In this paper, we present the Cosmos-Reason1 models that can understand the physical world and generate appropriate embodied decisions (e.g., next step action) in natural language through long chain-of-thought reasoning processes. We begin by defining key capabilities for Physical AI reasoning, with a focus on physical common sense and embodied reasoning. To represent physical common sense, we use a hierarchical ontology that captures fundamental knowledge about space, time, and physics. For embodied reasoning, we rely on a two-dimensional ontology that generalizes across different physical embodiments. Building on these capabilities, we develop two multimodal large language models, Cosmos-Reason1-8B and Cosmos-Reason1-56B. We curate data and train our models in four stages: vision pre-training, general supervised fine-tuning (SFT), Physical AI SFT, and Physical AI reinforcement learning (RL) as the post-training. To evaluate our models, we build comprehensive benchmarks for physical common sense and embodied reasoning according to our ontologies. Evaluation results show that Physical AI SFT and reinforcement learning bring significant improvements.


Neural-Symbolic Collaborative Distillation: Advancing Small Language Models for Complex Reasoning Tasks

arXiv.org Artificial Intelligence

In this paper, we propose $\textbf{Ne}$ural-$\textbf{Sy}$mbolic $\textbf{C}$ollaborative $\textbf{D}$istillation ($\textbf{NesyCD}$), a novel knowledge distillation method for learning the complex reasoning abilities of Large Language Models (LLMs, e.g., \textgreater 13B). We argue that complex reasoning tasks are difficult for Small Language Models (SLMs, e.g., $\leq$ 7B), as these tasks demand not only general cognitive abilities but also specialized knowledge, which is often sparse and difficult for these neural-based SLMs to effectively capture. Therefore, NesyCD distills the general capabilities and specialized knowledge in LLMs using different manners. On the one hand, we distill only general abilities from teacher LLMs into the student SLMs of parameterized neural networks. On the other hand, for the specialized abilities and uncommon knowledge of a complex reasoning task, we employ a symbolic knowledge distillation approach to obtain and store the specialized knowledge within a symbolic knowledge base (KB). By decoupling general and specialized capabilities, the proposed NesyCD can achieve superior performance cost-effectively, utilizing smaller models and blending parameterized neural networks with symbolic KB. Moreover, the specialized KB generalizes well and is comprehended and manipulated by humans. Our experiments show that NesyCD significantly boosts SLMs' complex reasoning performance on in-domain (BBH, GSM8K) and out-of-domain (AGIEval, ARC) datasets. Notably, our approach enabled the LLaMA3-8B and Qwen2-7B to surpass GPT-3.5-turbo in performance and come close to matching LLaMA3-70B, despite the latter having nine times more parameters. Our code will be available at https://github.com/Xnhyacinth/NesyCD.


LLaSA: Large Language and Structured Data Assistant

arXiv.org Artificial Intelligence

Structured data, such as tables, graphs, and databases, play a critical role in plentiful NLP tasks such as question answering and dialogue system. Recently, inspired by Vision-Language Models, Graph Neutral Networks (GNNs) have been introduced as an additional modality into the input of Large Language Models (LLMs) to improve their performance on Structured Knowledge Grounding (SKG) tasks. However, those GNN-enhanced LLMs have the following limitations: (1) They employ diverse GNNs to model varying types of structured data, rendering them unable to uniformly process various forms of structured data. (2) The pretraining of GNNs is coupled with specific LLMs, which prevents GNNs from fully aligning with the textual space and limits their adaptability to other LLMs. To address these issues, we propose \textbf{L}arge \textbf{L}anguage and \textbf{S}tructured Data \textbf{A}ssistant (LLaSA), a general framework for enhancing LLMs' ability to handle structured data. Specifically, we represent various types of structured data in a unified hypergraph format, and use self-supervised learning to pretrain a hypergraph encoder, and a G-Former compressing encoded hypergraph representations with cross-attention. The compressed hypergraph representations are appended to the serialized inputs during training and inference stages of LLMs. Experimental results on multiple SKG tasks show that our pretrained hypergraph encoder can adapt to various LLMs and enhance their ability to process different types of structured data. Besides, LLaSA, with LoRA fine-tuning, outperforms previous SOTA method using full parameters tuning.


Imagination Augmented Generation: Learning to Imagine Richer Context for Question Answering over Large Language Models

arXiv.org Artificial Intelligence

Retrieval-Augmented-Generation and Gener-ation-Augmented-Generation have been proposed to enhance the knowledge required for question answering over Large Language Models (LLMs). However, the former relies on external resources, and both require incorporating explicit documents into the context, which increases execution costs and susceptibility to noise data. Recent works indicate that LLMs have modeled rich knowledge, albeit not effectively triggered or awakened. Inspired by this, we propose a novel knowledge-augmented framework, Imagination-Augmented-Generation (IAG), which simulates the human capacity to compensate for knowledge deficits while answering questions solely through imagination, thereby awakening relevant knowledge in LLMs without relying on external resources. Guided by IAG, we propose an imagine richer context method for question answering (IMcQA). IMcQA consists of two modules: explicit imagination, which generates a short dummy document by learning from long context compression, and implicit imagination, which creates flexible adapters by distilling from a teacher model with a long context. Experimental results on three datasets demonstrate that IMcQA exhibits significant advantages in both open-domain and closed-book settings, as well as in out-of-distribution generalization. Our code will be available at https://github.com/Xnhyacinth/IAG.


From Instance Training to Instruction Learning: Task Adapters Generation from Instructions

arXiv.org Artificial Intelligence

Large language models (LLMs) have acquired the ability to solve general tasks by utilizing instruction finetuning (IFT). However, IFT still relies heavily on instance training of extensive task data, which greatly limits the adaptability of LLMs to real-world scenarios where labeled task instances are scarce and broader task generalization becomes paramount. Contrary to LLMs, humans acquire skills and complete tasks not merely through repeated practice but also by understanding and following instructional guidelines. This paper is dedicated to simulating human learning to address the shortcomings of instance training, focusing on instruction learning to enhance cross-task generalization. Within this context, we introduce Task Adapters Generation from Instructions (TAGI), which automatically constructs the task-specific model in a parameter generation manner based on the given task instructions without retraining for unseen tasks. Specifically, we utilize knowledge distillation to enhance the consistency between TAGI developed through Learning with Instruction and task-specific models developed through Training with Instance, by aligning the labels, output logits, and adapter parameters between them. TAGI is endowed with cross-task generalization capabilities through a two-stage training process that includes hypernetwork pretraining and finetuning. We evaluate TAGI on the Super-Natural Instructions and P3 datasets. The experimental results demonstrate that TAGI can match or even outperform traditional meta-trained models and other hypernetwork models, while significantly reducing computational requirements.


Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering

arXiv.org Artificial Intelligence

To address the issue of insufficient knowledge and the tendency to generate hallucination in Large Language Models (LLMs), numerous studies have endeavored to integrate LLMs with Knowledge Graphs (KGs). However, all these methods are evaluated on conventional Knowledge Graph Question Answering (KGQA) with complete KGs, where the factual triples involved in each question are entirely covered by the given KG. In this situation, LLM mainly acts as an agent to find answer entities by exploring the KG, rather than effectively integrating internal and external knowledge sources. However, in real-world scenarios, KGs are often incomplete to cover all the knowledge required to answer questions. To simulate real-world scenarios and evaluate the ability of LLMs to integrate internal and external knowledge, in this paper, we propose leveraging LLMs for QA under Incomplete Knowledge Graph (IKGQA), where the given KG doesn't include all the factual triples involved in each question. To handle IKGQA, we propose a training-free method called Generate-on-Graph (GoG) that can generate new factual triples while exploring on KGs. Specifically, we propose a selecting-generating-answering framework, which not only treat the LLM as an agent to explore on KGs, but also treat it as a KG to generate new facts based on the explored subgraph and its inherent knowledge. Experimental results on two datasets demonstrate that our GoG can solve IKGQA to a certain extent, while almost all previous methods cannot perform well on IKGQA.


Query2Triple: Unified Query Encoding for Answering Diverse Complex Queries over Knowledge Graphs

arXiv.org Artificial Intelligence

Complex Query Answering (CQA) is a challenge task of Knowledge Graph (KG). Due to the incompleteness of KGs, query embedding (QE) methods have been proposed to encode queries and entities into the same embedding space, and treat logical operators as neural set operators to obtain answers. However, these methods train KG embeddings and neural set operators concurrently on both simple (one-hop) and complex (multi-hop and logical) queries, which causes performance degradation on simple queries and low training efficiency. In this paper, we propose Query to Triple (Q2T), a novel approach that decouples the training for simple and complex queries. Q2T divides the training into two stages: (1) Pre-training a neural link predictor on simple queries to predict tail entities based on the head entity and relation. (2) Training a query encoder on complex queries to encode diverse complex queries into a unified triple form that can be efficiently solved by the pretrained neural link predictor. Our proposed Q2T is not only efficient to train, but also modular, thus easily adaptable to various neural link predictors that have been studied well. Extensive experiments demonstrate that, even without explicit modeling for neural set operators, Q2T still achieves state-of-the-art performance on diverse complex queries over three public benchmarks.


MGeo: Multi-Modal Geographic Pre-Training Method

arXiv.org Artificial Intelligence

As a core task in location-based services (LBS) (e.g., navigation maps), query and point of interest (POI) matching connects users' intent with real-world geographic information. Recently, pre-trained models (PTMs) have made advancements in many natural language processing (NLP) tasks. Generic text-based PTMs do not have enough geographic knowledge for query-POI matching. To overcome this limitation, related literature attempts to employ domain-adaptive pre-training based on geo-related corpus. However, a query generally contains mentions of multiple geographic objects, such as nearby roads and regions of interest (ROIs). The geographic context (GC), i.e., these diverse geographic objects and their relationships, is therefore pivotal to retrieving the most relevant POI. Single-modal PTMs can barely make use of the important GC and therefore have limited performance. In this work, we propose a novel query-POI matching method Multi-modal Geographic language model (MGeo), which comprises a geographic encoder and a multi-modal interaction module. MGeo represents GC as a new modality and is able to fully extract multi-modal correlations for accurate query-POI matching. Besides, there is no publicly available benchmark for this topic. In order to facilitate further research, we build a new open-source large-scale benchmark Geographic TExtual Similarity (GeoTES). The POIs come from an open-source geographic information system (GIS). The queries are manually generated by annotators to prevent privacy issues. Compared with several strong baselines, the extensive experiment results and detailed ablation analyses on GeoTES demonstrate that our proposed multi-modal pre-training method can significantly improve the query-POI matching capability of generic PTMs, even when the queries' GC is not provided. Our code and dataset are publicly available at https://github.com/PhantomGrapes/MGeo.


GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark

arXiv.org Artificial Intelligence

With a fast developing pace of geographic applications, automatable and intelligent models are essential to be designed to handle the large volume of information. However, few researchers focus on geographic natural language processing, and there has never been a benchmark to build a unified standard. In this work, we propose a GeoGraphic Language Understanding Evaluation benchmark, named GeoGLUE. We collect data from open-released geographic resources and introduce six natural language understanding tasks, including geographic textual similarity on recall, geographic textual similarity on rerank, geographic elements tagging, geographic composition analysis, geographic where what cut, and geographic entity alignment.


Boosting ship detection in SAR images with complementary pretraining techniques

arXiv.org Artificial Intelligence

Deep learning methods have made significant progress in ship detection in synthetic aperture radar (SAR) images. The pretraining technique is usually adopted to support deep neural networks-based SAR ship detectors due to the scarce labeled SAR images. However, directly leveraging ImageNet pretraining is hardly to obtain a good ship detector because of different imaging perspective and geometry. In this paper, to resolve the problem of inconsistent imaging perspective between ImageNet and earth observations, we propose an optical ship detector (OSD) pretraining technique, which transfers the characteristics of ships in earth observations to SAR images from a large-scale aerial image dataset. On the other hand, to handle the problem of different imaging geometry between optical and SAR images, we propose an optical-SAR matching (OSM) pretraining technique, which transfers plentiful texture features from optical images to SAR images by common representation learning on the optical-SAR matching task. Finally, observing that the OSD pretraining based SAR ship detector has a better recall on sea area while the OSM pretraining based SAR ship detector can reduce false alarms on land area, we combine the predictions of the two detectors through weighted boxes fusion to further improve detection results. Extensive experiments on four SAR ship detection datasets and two representative CNN-based detection benchmarks are conducted to show the effectiveness and complementarity of the two proposed detectors, and the state-of-the-art performance of the combination of the two detectors. The proposed method won the sixth place of ship detection in SAR images in 2020 Gaofen challenge.