Xu, Yang
MOB-FL: Mobility-Aware Federated Learning for Intelligent Connected Vehicles
Xie, Bowen, Sun, Yuxuan, Zhou, Sheng, Niu, Zhisheng, Xu, Yang, Chen, Jingran, Gündüz, Deniz
Federated learning (FL) is a promising approach to enable the future Internet of vehicles consisting of intelligent connected vehicles (ICVs) with powerful sensing, computing and communication capabilities. We consider a base station (BS) coordinating nearby ICVs to train a neural network in a collaborative yet distributed manner, in order to limit data traffic and privacy leakage. However, due to the mobility of vehicles, the connections between the BS and ICVs are short-lived, which affects the resource utilization of ICVs, and thus, the convergence speed of the training process. In this paper, we propose an accelerated FL-ICV framework, by optimizing the duration of each training round and the number of local iterations, for better convergence performance of FL. We propose a mobility-aware optimization algorithm called MOB-FL, which aims at maximizing the resource utilization of ICVs under short-lived wireless connections, so as to increase the convergence speed. Simulation results based on the beam selection and the trajectory prediction tasks verify the effectiveness of the proposed solution.
Tracing Semantic Variation in Slang
Sun, Zhewei, Xu, Yang
The meaning of a slang term can vary in different communities. However, slang semantic variation is not well understood and under-explored in the natural language processing of slang. One existing view argues that slang semantic variation is driven by culture-dependent communicative needs. An alternative view focuses on slang's social functions suggesting that the desire to foster semantic distinction may have led to the historical emergence of community-specific slang senses. We explore these theories using computational models and test them against historical slang dictionary entries, with a focus on characterizing regularity in the geographical variation of slang usages attested in the US and the UK over the past two centuries. We show that our models are able to predict the regional identity of emerging slang word meanings from historical slang records. We offer empirical evidence that both communicative need and semantic distinction play a role in the variation of slang meaning yet their relative importance fluctuates over the course of history. Our work offers an opportunity for incorporating historical cultural elements into the natural language processing of slang.
Improving short-term bike sharing demand forecast through an irregular convolutional neural network
Li, Xinyu, Xu, Yang, Zhang, Xiaohu, Shi, Wenzhong, Yue, Yang, Li, Qingquan
As an important task for the management of bike sharing systems, accurate forecast of travel demand could facilitate dispatch and relocation of bicycles to improve user satisfaction. In recent years, many deep learning algorithms have been introduced to improve bicycle usage forecast. A typical practice is to integrate convolutional (CNN) and recurrent neural network (RNN) to capture spatial-temporal dependency in historical travel demand. For typical CNN, the convolution operation is conducted through a kernel that moves across a "matrix-format" city to extract features over spatially adjacent urban areas. This practice assumes that areas close to each other could provide useful information that improves prediction accuracy. However, bicycle usage in neighboring areas might not always be similar, given spatial variations in built environment characteristics and travel behavior that affect cycling activities. Yet, areas that are far apart can be relatively more similar in temporal usage patterns. To utilize the hidden linkage among these distant urban areas, the study proposes an irregular convolutional Long-Short Term Memory model (IrConv+LSTM) to improve short-term bike sharing demand forecast. The model modifies traditional CNN with irregular convolutional architecture to extract dependency among "semantic neighbors". The proposed model is evaluated with a set of benchmark models in five study sites, which include one dockless bike sharing system in Singapore, and four station-based systems in Chicago, Washington, D.C., New York, and London. We find that IrConv+LSTM outperforms other benchmark models in the five cities. The model also achieves superior performance in areas with varying levels of bicycle usage and during peak periods. The findings suggest that "thinking beyond spatial neighbors" can further improve short-term travel demand prediction of urban bike sharing systems.
ML4CO-KIDA: Knowledge Inheritance in Dataset Aggregation
Cao, Zixuan, Xu, Yang, Huang, Zhewei, Zhou, Shuchang
The Machine Learning for Combinatorial Optimization (ML4CO) NeurIPS 2021 competition aims to improve state-of-the-art combinatorial optimization solvers by replacing key heuristic components with machine learning models. On the dual task, we design models to make branching decisions to promote the dual bound increase faster. We propose a knowledge inheritance method to generalize knowledge of different models from the dataset aggregation process, named KIDA. Our improvement overcomes some defects of the baseline graph-neural-networks-based methods. Further, we won the $1$\textsuperscript{st} Place on the dual task. We hope this report can provide useful experience for developers and researchers. The code is available at https://github.com/megvii-research/NeurIPS2021-ML4CO-KIDA.
Hierarchical Multi-robot Strategies Synthesis and Optimization under Individual and Collaborative Temporal Logic Specifications
Bai, Ruofei, Zheng, Ronghao, Xu, Yang, Liu, Meiqin, Zhang, Senlin
This paper presents a hierarchical framework to solve the multi-robot temporal task planning problem. We assume that each robot has its individual task specification and the robots have to jointly satisfy a global collaborative task specification, both described in linear temporal logic. Specifically, a central server firstly extracts and decomposes a collaborative task sequence from the automaton corresponding to the collaborative task specification, and allocates the subtasks in the sequence to robots. The robots can then synthesize their initial execution strategies based on locally constructed product automatons, combining the assigned collaborative tasks and their individual task specifications. Furthermore, we propose a distributed execution strategy adjusting mechanism to iteratively improve the time efficiency, by reducing wait time in collaborations caused by potential synchronization constraints. We prove the completeness of the proposed framework under assumptions, and analyze its time complexity and optimality. Extensive simulation results verify the scalability and optimization efficiency of the proposed method.
Improving probability selecting based weights for Satisfiability Problem
Fu, Huimin, Xu, Yang, Liu, Jun, Wu, Guanfeng, Geoff, Sutcliffe
The Boolean Satisfiability problem (SAT) is important on artificial intelligence community and the impact of its solving on complex problems. Recently, great breakthroughs have been made respectively on stochastic local search (SLS) algorithms for uniform random k-SAT resulting in several state-of-the-art SLS algorithms Score2SAT, YalSAT, ProbSAT, CScoreSAT and on a hybrid algorithm for hard random SAT (HRS) resulting in one state-of-the-art hybrid algorithm SparrowToRiss. However, there is no an algorithm which can effectively solve both uniform random k-SAT and HRS. In this paper, we present a new SLS algorithm named SelectNTS for uniform random k-SAT and HRS. SelectNTS is an improved probability selecting based local search algorithm for SAT problem. The core of SelectNTS relies on new clause and variable selection heuristics. The new clause selection heuristic uses a new clause weighting scheme and a biased random walk. The new variable selection heuristic uses a probability selecting strategy with the variation of CC strategy based on a new variable weighting scheme. Extensive experimental results on the well-known random benchmarks instances from the SAT Competitions in 2017 and 2018, and on randomly generated problems, show that our algorithm outperforms state-of-the-art random SAT algorithms, and our SelectNTS can effectively solve both uniform random k-SAT and HRS.
Inference and communication in the game of Password
Xu, Yang, Kemp, Charles
Communication between a speaker and hearer will be most efficient when both parties make accurate inferences about the other. We study inference and communication in a television game called Password, where speakers must convey secret words to hearers by providing one-word clues. Our working hypothesis is that human communication is relatively efficient, and we use game show data to examine three predictions. First, we predict that speakers and hearers are both considerate, and that both take the other's perspective into account. Second, we predict that speakers and hearers are calibrated, and that both make accurate assumptions about the strategy used by the other. Finally, we predict that speakers and hearers are collaborative, and that they tend to share the cognitive burden of communication equally. We find evidence in support of all three predictions, and demonstrate in addition that efficient communication tends to break down when speakers and hearers are placed under time pressure.