Goto

Collaborating Authors

 Xu, Yan


Exact Adversarial Attack to Image Captioning via Structured Output Learning with Latent Variables

arXiv.org Artificial Intelligence

In this work, we study the robustness of a CNN+RNN based image captioning system being subjected to adversarial noises. We propose to fool an image captioning system to generate some targeted partial captions for an image polluted by adversarial noises, even the targeted captions are totally irrelevant to the image content. A partial caption indicates that the words at some locations in this caption are observed, while words at other locations are not restricted.It is the first work to study exact adversarial attacks of targeted partial captions. Due to the sequential dependencies among words in a caption, we formulate the generation of adversarial noises for targeted partial captions as a structured output learning problem with latent variables. Both the generalized expectation maximization algorithm and structural SVMs with latent variables are then adopted to optimize the problem. The proposed methods generate very successful at-tacks to three popular CNN+RNN based image captioning models. Furthermore, the proposed attack methods are used to understand the inner mechanism of image captioning systems, providing the guidance to further improve automatic image captioning systems towards human captioning.


Model-based clustering for identifying disease-associated SNPs in case-control genome-wide association studies

arXiv.org Machine Learning

Genome-wide association studies (GWASs) aim to detect genetic risk factors for complex human diseases by identifying disease-associated single-nucleotide polymorphisms (SNPs). The traditional SNP-wise approach along with multiple testing adjustment is over-conservative and lack of power in many GWASs. In this article, we proposed a model-based clustering method that transforms the challenging high-dimension-small-sample-size problem to low-dimension-large-sample-size problem and borrows information across SNPs by grouping SNPs into three clusters. We pre-specify the patterns of clusters by minor allele frequencies of SNPs between cases and controls, and enforce the patterns with prior distributions. In the simulation studies our proposed novel model outperform traditional SNP-wise approach by showing better controls of false discovery rate (FDR) and higher sensitivity. We re-analyzed two real studies to identifying SNPs associated with severe bortezomib-induced peripheral neuropathy (BiPN) in patients with multiple myeloma (MM). The original analysis in the literature failed to identify SNPs after FDR adjustment. Our proposed method not only detected the reported SNPs after FDR adjustment but also discovered a novel BiPN-associated SNP rs4351714 that has been reported to be related to MM in another study.


Human-Interactive Subgoal Supervision for Efficient Inverse Reinforcement Learning

arXiv.org Artificial Intelligence

Humans are able to understand and perform complex tasks by strategically structuring the tasks into incremental steps or subgoals. For a robot attempting to learn to perform a sequential task with critical subgoal states, such states can provide a natural opportunity for interaction with a human expert. This paper analyzes the benefit of incorporating a notion of subgoals into Inverse Reinforcement Learning (IRL) with a Human-In-The-Loop (HITL) framework. The learning process is interactive, with a human expert first providing input in the form of full demonstrations along with some subgoal states. These subgoal states define a set of subtasks for the learning agent to complete in order to achieve the final goal. The learning agent queries for partial demonstrations corresponding to each subtask as needed when the agent struggles with the subtask. The proposed Human Interactive IRL (HI-IRL) framework is evaluated on several discrete path-planning tasks. We demonstrate that subgoal-based interactive structuring of the learning task results in significantly more efficient learning, requiring only a fraction of the demonstration data needed for learning the underlying reward function with the baseline IRL model.


Autotune: A Derivative-free Optimization Framework for Hyperparameter Tuning

arXiv.org Machine Learning

Machine learning applications often require hyperparameter tuning. The hyperparameters usually drive both the efficiency of the model training process and the resulting model quality. For hyperparameter tuning, machine learning algorithms are complex black-boxes. This creates a class of challenging optimization problems, whose objective functions tend to be nonsmooth, discontinuous, unpredictably varying in computational expense, and include continuous, categorical, and/or integer variables. Further, function evaluations can fail for a variety of reasons including numerical difficulties or hardware failures. Additionally, not all hyperparameter value combinations are compatible, which creates so called hidden constraints. Robust and efficient optimization algorithms are needed for hyperparameter tuning. In this paper we present an automated parallel derivative-free optimization framework called \textbf{Autotune}, which combines a number of specialized sampling and search methods that are very effective in tuning machine learning models despite these challenges. Autotune provides significantly improved models over using default hyperparameter settings with minimal user interaction on real-world applications. Given the inherent expense of training numerous candidate models, we demonstrate the effectiveness of Autotune's search methods and the efficient distributed and parallel paradigms for training and tuning models, and also discuss the resource trade-offs associated with the ability to both distribute the training process and parallelize the tuning process.


Sleep Stage Classification Based on Multi-level Feature Learning and Recurrent Neural Networks via Wearable Device

arXiv.org Machine Learning

This paper proposes a practical approach for automatic sleep stage classification based on a multi-level feature learning framework and Recurrent Neural Network (RNN) classifier using heart rate and wrist actigraphy derived from a wearable device. The feature learning framework is designed to extract low- and mid-level features. Low-level features capture temporal and frequency domain properties and mid-level features learn compositions and structural information of signals. Since sleep staging is a sequential problem with long-term dependencies, we take advantage of RNNs with Bidirectional Long Short-Term Memory (BLSTM) architectures for sequence data learning. To simulate the actual situation of daily sleep, experiments are conducted with a resting group in which sleep is recorded in resting state, and a comprehensive group in which both resting sleep and non-resting sleep are included.We evaluate the algorithm based on an eight-fold cross validation to classify five sleep stages (W, N1, N2, N3, and REM). The proposed algorithm achieves weighted precision, recall and F1 score of 58.0%, 60.3%, and 58.2% in the resting group and 58.5%, 61.1%, and 58.5% in the comprehensive group, respectively. Various comparison experiments demonstrate the effectiveness of feature learning and BLSTM. We further explore the influence of depth and width of RNNs on performance. Our method is specially proposed for wearable devices and is expected to be applicable for long-term sleep monitoring at home. Without using too much prior domain knowledge, our method has the potential to generalize sleep disorder detection.


Optimizing Quantiles in Preference-Based Markov Decision Processes

AAAI Conferences

In the Markov decision process model, policies are usually evaluated by expected cumulative rewards. As this decision criterion is not always suitable, we propose in this paper an algorithm for computing a policy optimal for the quantile criterion. Both finite and infinite horizons are considered. Finally we experimentally evaluate our approach on random MDPs and on a data center control problem.