Xu, Wenting
Storynizor: Consistent Story Generation via Inter-Frame Synchronized and Shuffled ID Injection
Ma, Yuhang, Xu, Wenting, Zhao, Chaoyi, Sun, Keqiang, Jin, Qinfeng, Zhao, Zeng, Fan, Changjie, Hu, Zhipeng
Recent advances in text-to-image diffusion models have spurred significant interest in continuous story image generation. In this paper, we introduce Storynizor, a model capable of generating coherent stories with strong inter-frame character consistency, effective foreground-background separation, and diverse pose variation. The core innovation of Storynizor lies in its key modules: ID-Synchronizer and ID-Injector. The ID-Synchronizer employs an auto-mask self-attention module and a mask perceptual loss across inter-frame images to improve the consistency of character generation, vividly representing their postures and backgrounds. The ID-Injector utilize a Shuffling Reference Strategy (SRS) to integrate ID features into specific locations, enhancing ID-based consistent character generation. Additionally, to facilitate the training of Storynizor, we have curated a novel dataset called StoryDB comprising 100, 000 images. This dataset contains single and multiple-character sets in diverse environments, layouts, and gestures with detailed descriptions. Experimental results indicate that Storynizor demonstrates superior coherent story generation with high-fidelity character consistency, flexible postures, and vivid backgrounds compared to other character-specific methods.
Character-Adapter: Prompt-Guided Region Control for High-Fidelity Character Customization
Ma, Yuhang, Xu, Wenting, Tang, Jiji, Jin, Qinfeng, Zhang, Rongsheng, Zhao, Zeng, Fan, Changjie, Hu, Zhipeng
Customized image generation, which seeks to synthesize images with consistent characters, holds significant relevance for applications such as storytelling, portrait generation, and character design. However, previous approaches have encountered challenges in preserving characters with high-fidelity consistency due to inadequate feature extraction and concept confusion of reference characters. Therefore, we propose Character-Adapter, a plug-and-play framework designed to generate images that preserve the details of reference characters, ensuring high-fidelity consistency. Character-Adapter employs prompt-guided segmentation to ensure fine-grained regional features of reference characters and dynamic region-level adapters to mitigate concept confusion. Extensive experiments are conducted to validate the effectiveness of Character-Adapter. Both quantitative and qualitative results demonstrate that Character-Adapter achieves the state-of-the-art performance of consistent character generation, with an improvement of 24.8% compared with other methods.
Reinforced Medical Report Generation with X-Linear Attention and Repetition Penalty
Xu, Wenting, Qi, Chang, Xu, Zhenghua, Lukasiewicz, Thomas
To reduce doctors' workload, deep-learning-based automatic medical report generation has recently attracted more and more research efforts, where attention mechanisms and reinforcement learning are integrated with the classic encoder-decoder architecture to enhance the performance of deep models. However, these state-of-the-art solutions mainly suffer from two shortcomings: (i) their attention mechanisms cannot utilize high-order feature interactions, and (ii) due to the use of TF-IDF-based reward functions, these methods are fragile with generating repeated terms. Therefore, in this work, we propose a reinforced medical report generation solution with x-linear attention and repetition penalty mechanisms (ReMRG-XR) to overcome these problems. Specifically, x-linear attention modules are used to explore high-order feature interactions and achieve multi-modal reasoning, while repetition penalty is used to apply penalties to repeated terms during the model's training process. Extensive experimental studies have been conducted on two public datasets, and the results show that ReMRG-XR greatly outperforms the state-of-the-art baselines in terms of all metrics.