Goto

Collaborating Authors

 Xu, Wenju


Shopping MMLU: A Massive Multi-Task Online Shopping Benchmark for Large Language Models

arXiv.org Artificial Intelligence

Online shopping is a complex multi-task, few-shot learning problem with a wide and evolving range of entities, relations, and tasks. However, existing models and benchmarks are commonly tailored to specific tasks, falling short of capturing the full complexity of online shopping. Large Language Models (LLMs), with their multi-task and few-shot learning abilities, have the potential to profoundly transform online shopping by alleviating task-specific engineering efforts and by providing users with interactive conversations. Despite the potential, LLMs face unique challenges in online shopping, such as domain-specific concepts, implicit knowledge, and heterogeneous user behaviors. Motivated by the potential and challenges, we propose Shopping MMLU, a diverse multi-task online shopping benchmark derived from real-world Amazon data. Shopping MMLU consists of 57 tasks covering 4 major shopping skills: concept understanding, knowledge reasoning, user behavior alignment, and multi-linguality, and can thus comprehensively evaluate the abilities of LLMs as general shop assistants. With Shopping MMLU, we benchmark over 20 existing LLMs and uncover valuable insights about practices and prospects of building versatile LLM-based shop assistants. Shopping MMLU can be publicly accessed at https://github.com/KL4805/ShoppingMMLU. In addition, with Shopping MMLU, we host a competition in KDD Cup 2024 with over 500 participating teams. The winning solutions and the associated workshop can be accessed at our website https://amazon-kddcup24.github.io/.


Time-Delay Momentum: A Regularization Perspective on the Convergence and Generalization of Stochastic Momentum for Deep Learning

arXiv.org Machine Learning

In this paper we study the problem of convergence and generalization error bound of stochastic momentum for deep learning from the perspective of regularization. To do so, we first interpret momentum as solving an $\ell_2$-regularized minimization problem to learn the offsets between arbitrary two successive model parameters. We call this {\em time-delay momentum} because the model parameter is updated after a few iterations towards finding the minimizer. We then propose our learning algorithm, \ie stochastic gradient descent (SGD) with time-delay momentum. We show that our algorithm can be interpreted as solving a sequence of strongly convex optimization problems using SGD. We prove that under mild conditions our algorithm can converge to a stationary point with rate of $O(\frac{1}{\sqrt{K}})$ and generalization error bound of $O(\frac{1}{\sqrt{n\delta}})$ with probability at least $1-\delta$, where $K,n$ are the numbers of model updates and training samples, respectively. We demonstrate the empirical superiority of our algorithm in deep learning in comparison with the state-of-the-art deep learning solvers.


Adversarially Approximated Autoencoder for Image Generation and Manipulation

arXiv.org Machine Learning

Regularized autoencoders learn the latent codes, a structure with the regularization under the distribution, which enables them the capability to infer the latent codes given observations and generate new samples given the codes. However, they are sometimes ambiguous as they tend to produce reconstructions that are not necessarily faithful reproduction of the inputs. The main reason is to enforce the learned latent code distribution to match a prior distribution while the true distribution remains unknown. To improve the reconstruction quality and learn the latent space a manifold structure, this work present a novel approach using the adversarially approximated autoencoder (AAAE) to investigate the latent codes with adversarial approximation. Instead of regularizing the latent codes by penalizing on the distance between the distributions of the model and the target, AAAE learns the autoencoder flexibly and approximates the latent space with a simpler generator. The ratio is estimated using generative adversarial network (GAN) to enforce the similarity of the distributions. Additionally, the image space is regularized with an additional adversarial regularizer. The proposed approach unifies two deep generative models for both latent space inference and diverse generation. The learning scheme is realized without regularization on the latent codes, which also encourages faithful reconstruction. Extensive validation experiments on four real-world datasets demonstrate the superior performance of AAAE. In comparison to the state-of-the-art approaches, AAAE generates samples with better quality and shares the properties of regularized autoencoder with a nice latent manifold structure.