Xu, Weixiang
Re-Parameterization of Lightweight Transformer for On-Device Speech Emotion Recognition
Zhang, Zixing, Dong, Zhongren, Xu, Weixiang, Han, Jing
With the increasing implementation of machine learning models on edge or Internet-of-Things (IoT) devices, deploying advanced models on resource-constrained IoT devices remains challenging. Transformer models, a currently dominant neural architecture, have achieved great success in broad domains but their complexity hinders its deployment on IoT devices with limited computation capability and storage size. Although many model compression approaches have been explored, they often suffer from notorious performance degradation. To address this issue, we introduce a new method, namely Transformer Re-parameterization, to boost the performance of lightweight Transformer models. It consists of two processes: the High-Rank Factorization (HRF) process in the training stage and the deHigh-Rank Factorization (deHRF) process in the inference stage. In the former process, we insert an additional linear layer before the Feed-Forward Network (FFN) of the lightweight Transformer. It is supposed that the inserted HRF layers can enhance the model learning capability. In the later process, the auxiliary HRF layer will be merged together with the following FFN layer into one linear layer and thus recover the original structure of the lightweight model. To examine the effectiveness of the proposed method, we evaluate it on three widely used Transformer variants, i.e., ConvTransformer, Conformer, and SpeechFormer networks, in the application of speech emotion recognition on the IEMOCAP, M3ED and DAIC-WOZ datasets. Experimental results show that our proposed method consistently improves the performance of lightweight Transformers, even making them comparable to large models. The proposed re-parameterization approach enables advanced Transformer models to be deployed on resource-constrained IoT devices.
TernaryLLM: Ternarized Large Language Model
Chen, Tianqi, Li, Zhe, Xu, Weixiang, Zhu, Zeyu, Li, Dong, Tian, Lu, Barsoum, Emad, Wang, Peisong, Cheng, Jian
Large language models (LLMs) have achieved remarkable performance on Natural Language Processing (NLP) tasks, but they are hindered by high computational costs and memory requirements. Ternarization, an extreme form of quantization, offers a solution by reducing memory usage and enabling energy-efficient floating-point additions. However, applying ternarization to LLMs faces challenges stemming from outliers in both weights and activations. In this work, observing asymmetric outliers and non-zero means in weights, we introduce Dual Learnable Ternarization (DLT), which enables both scales and shifts to be learnable. We also propose Outlier-Friendly Feature Knowledge Distillation (OFF) to recover the information lost in extremely low-bit quantization. The proposed OFF can incorporate semantic information and is insensitive to outliers. At the core of OFF is maximizing the mutual information between features in ternarized and floating-point models using cosine similarity. Extensive experiments demonstrate that our TernaryLLM surpasses previous low-bit quantization methods on the standard text generation and zero-shot benchmarks for different LLM families. Specifically, for one of the most powerful open-source models, LLaMA-3, our approach (W1.58A16) outperforms the previous state-of-the-art method (W2A16) by 5.8 in terms of perplexity on C4 and by 8.2% in terms of average accuracy on zero-shot tasks.
HAFFormer: A Hierarchical Attention-Free Framework for Alzheimer's Disease Detection From Spontaneous Speech
Dong, Zhongren, Zhang, Zixing, Xu, Weixiang, Han, Jing, Ou, Jianjun, Schuller, Björn W.
Automatically detecting Alzheimer's Disease (AD) from spontaneous speech plays an important role in its early diagnosis. Recent approaches highly rely on the Transformer architectures due to its efficiency in modelling long-range context dependencies. However, the quadratic increase in computational complexity associated with self-attention and the length of audio poses a challenge when deploying such models on edge devices. In this context, we construct a novel framework, namely Hierarchical Attention-Free Transformer (HAFFormer), to better deal with long speech for AD detection. Specifically, we employ an attention-free module of Multi-Scale Depthwise Convolution to replace the self-attention and thus avoid the expensive computation, and a GELU-based Gated Linear Unit to replace the feedforward layer, aiming to automatically filter out the redundant information. Moreover, we design a hierarchical structure to force it to learn a variety of information grains, from the frame level to the dialogue level. By conducting extensive experiments on the ADReSS-M dataset, the introduced HAFFormer can achieve competitive results (82.6% accuracy) with other recent work, but with significant computational complexity and model size reduction compared to the standard Transformer. This shows the efficiency of HAFFormer in dealing with long audio for AD detection.