Goto

Collaborating Authors

 Xu, Tianhao


OpenGrok: Enhancing SNS Data Processing with Distilled Knowledge and Mask-like Mechanisms

arXiv.org Artificial Intelligence

This report details Lumen Labs' novel approach to processing Social Networking Service (SNS) data. We leverage knowledge distillation, specifically a simple distillation method inspired by DeepSeek-R1's CoT acquisition, combined with prompt hacking, to extract valuable training data from the Grok model. This data is then used to fine-tune a Phi-3-mini model, augmented with a mask-like mechanism specifically designed for handling the nuances of SNS data. Our method demonstrates state-of-the-art (SOTA) performance on several SNS data processing tasks, outperforming existing models like Grok, Phi-3, and GPT-4. We provide a comprehensive analysis of our approach, including mathematical formulations, engineering details, ablation studies, and comparative evaluations.


Enhancing Large Language Model Efficiencyvia Symbolic Compression: A Formal Approach Towards Interpretability

arXiv.org Artificial Intelligence

This paper proposes a formal framework based on symbolic compression, integrating combinatory logic, information-theoretic optimal encoding, and context-aware inference techniques to achieve a step-change improvement in token efficiency while preserving semantic integrity. We establish a mathematical framework within a functional programming paradigm, derive the quantitative relationship between symbolic density and model interpretability, and propose a differentiable compression factor metric to evaluate encoding efficiency. Furthermore, we leverage parameter-efficient fine-tuning (PEFT) techniques to achieve a low-cost application of the GAEL language. Experimental results show that this method achieves a 78.3% token compression rate in code generation tasks while improving logical traceability by 62% through structural explicitness. This research provides new theoretical tools for efficient inference in LLMs and opens a symbolic path for model interpretability research.


MyGO Multiplex CoT: A Method for Self-Reflection in Large Language Models via Double Chain of Thought Thinking

arXiv.org Artificial Intelligence

Recent advancements in large language models (LLMs) have demonstrated their impressive abilities in various reasoning and decision-making tasks. However, the quality and coherence of the reasoning process can still benefit from enhanced introspection and self-reflection. In this paper, we introduce Multiplex CoT (Chain of Thought), a method that enables LLMs to simulate a form of self-review while reasoning, by initiating double Chain of Thought (CoT) thinking. Multiplex CoT leverages the power of iterative reasoning, where the model generates an initial chain of thought and subsequently critiques and refines this reasoning with a second round of thought generation. This recursive approach allows for more coherent, logical, and robust answers, improving the overall decision-making process. We demonstrate how this method can be effectively implemented using simple prompt engineering in existing LLM architectures, achieving an effect similar to that of the Learning-Refinement Model (LRM) without the need for additional training. Additionally, we present a practical guide for implementing the method in Google Colab, enabling easy integration into real-world applications.


OCR-RTPS: An OCR-based real-time positioning system for the valet parking

arXiv.org Artificial Intelligence

Obtaining the position of ego-vehicle is a crucial prerequisite for automatic control and path planning in the field of autonomous driving. Most existing positioning systems rely on GPS, RTK, or wireless signals, which are arduous to provide effective localization under weak signal conditions. This paper proposes a real-time positioning system based on the detection of the parking numbers as they are unique positioning marks in the parking lot scene. It does not only can help with the positioning with open area, but also run independently under isolation environment. The result tested on both public datasets and self-collected dataset show that the system outperforms others in both performances and applies in practice. In addition, the code and dataset will release later.