Goto

Collaborating Authors

 Xu, Songlin


Classroom Simulacra: Building Contextual Student Generative Agents in Online Education for Learning Behavioral Simulation

arXiv.org Artificial Intelligence

Student simulation supports educators to improve teaching by interacting with virtual students. However, most existing approaches ignore the modulation effects of course materials because of two challenges: the lack of datasets with granularly annotated course materials, and the limitation of existing simulation models in processing extremely long textual data. To solve the challenges, we first run a 6-week education workshop from N = 60 students to collect fine-grained data using a custom built online education system, which logs students' learning behaviors as they interact with lecture materials over time. Second, we propose a transferable iterative reflection (TIR) module that augments both prompting-based and finetuning-based large language models (LLMs) for simulating learning behaviors. Our comprehensive experiments show that TIR enables the LLMs to perform more accurate student simulation than classical deep learning models, even with limited demonstration data. Our TIR approach better captures the granular dynamism of learning performance and inter-student correlations in classrooms, paving the way towards a ''digital twin'' for online education.


EduAgent: Generative Student Agents in Learning

arXiv.org Artificial Intelligence

Student simulation in online education is important to address dynamic learning behaviors of students with diverse backgrounds. Existing simulation models based on deep learning usually need massive training data, lacking prior knowledge in educational contexts. Large language models (LLMs) may contain such prior knowledge since they are pre-trained from a large corpus. However, because student behaviors are dynamic and multifaceted with individual differences, directly prompting LLMs is not robust nor accurate enough to capture fine-grained interactions among diverse student personas, learning behaviors, and learning outcomes. This work tackles this problem by presenting a newly annotated fine-grained large-scale dataset and proposing EduAgent, a novel generative agent framework incorporating cognitive prior knowledge (i.e., theoretical findings revealed in cognitive science) to guide LLMs to first reason correlations among various behaviors and then make simulations. Our two experiments show that EduAgent could not only mimic and predict learning behaviors of real students but also generate realistic learning behaviors of virtual students without real data.


Peer attention enhances student learning

arXiv.org Artificial Intelligence

Human visual attention is susceptible to social influences. In education, peer effects impact student learning, but their precise role in modulating attention remains unclear. Our experiment (N=311) demonstrates that displaying peer visual attention regions when students watch online course videos enhances their focus and engagement. However, students retain adaptability in following peer attention cues. Overall, guided peer attention improves learning experiences and outcomes. These findings elucidate how peer visual attention shapes students' gaze patterns, deepening understanding of peer influence on learning. They also offer insights into designing adaptive online learning interventions leveraging peer attention modelling to optimize student attentiveness and success.


Modelling human logical reasoning process in dynamic environmental stress with cognitive agents

arXiv.org Artificial Intelligence

Modelling human cognition can provide key insights into behavioral dynamics under changing conditions. This enables synthetic data generation and guides adaptive interventions for cognitive regulation. Challenges arise when environments are highly dynamic, obscuring stimulus-behavior relationships. We propose a cognitive agent integrating drift-diffusion with deep reinforcement learning to simulate granular stress effects on logical reasoning process. Leveraging a large dataset of 21,157 logical responses, we investigate performance impacts of dynamic stress. This prior knowledge informed model design and evaluation. Quantitatively, the framework improves cognition modelling by capturing both subject-specific and stimuli-specific behavioural differences. Qualitatively, it captures general trends in human logical reasoning under stress. Our approach is extensible to examining diverse environmental influences on cognition and behavior. Overall, this work demonstrates a powerful, data-driven methodology to simulate and understand the vagaries of human logical reasoning process in dynamic contexts.


Leveraging generative artificial intelligence to simulate student learning behavior

arXiv.org Artificial Intelligence

Student simulation presents a transformative approach to enhance learning outcomes, advance educational research, and ultimately shape the future of effective pedagogy. We explore the feasibility of using large language models (LLMs), a remarkable achievement in AI, to simulate student learning behaviors. Unlike conventional machine learning based prediction, we leverage LLMs to instantiate virtual students with specific demographics and uncover intricate correlations among learning experiences, course materials, understanding levels, and engagement. Our objective is not merely to predict learning outcomes but to replicate learning behaviors and patterns of real students. We validate this hypothesis through three experiments. The first experiment, based on a dataset of N = 145, simulates student learning outcomes from demographic data, revealing parallels with actual students concerning various demographic factors. The second experiment (N = 4524) results in increasingly realistic simulated behaviors with more assessment history for virtual students modelling. The third experiment (N = 27), incorporating prior knowledge and course interactions, indicates a strong link between virtual students' learning behaviors and fine-grained mappings from test questions, course materials, engagement and understanding levels. Collectively, these findings deepen our understanding of LLMs and demonstrate its viability for student simulation, empowering more adaptable curricula design to enhance inclusivity and educational effectiveness.