Xu, Shi
Lemur: Log Parsing with Entropy Sampling and Chain-of-Thought Merging
Zhang, Wei, Guo, Hongcheng, Le, Anjie, Yang, Jian, Liu, Jiaheng, Li, Zhoujun, Zheng, Tieqiao, Xu, Shi, Zang, Runqiang, Zheng, Liangfan, Zhang, Bo
Logs produced by extensive software systems are integral to monitoring system behaviors. Advanced log analysis facilitates the detection, alerting, and diagnosis of system faults. Log parsing, which entails transforming raw log messages into structured templates, constitutes a critical phase in the automation of log analytics. Existing log parsers fail to identify the correct templates due to reliance on human-made rules. Besides, These methods focus on statistical features while ignoring semantic information in log messages. To address these challenges, we introduce a cutting-edge \textbf{L}og parsing framework with \textbf{E}ntropy sampling and Chain-of-Thought \textbf{M}erging (Lemur). Specifically, to discard the tedious manual rules. We propose a novel sampling method inspired by information entropy, which efficiently clusters typical logs. Furthermore, to enhance the merging of log templates, we design a chain-of-thought method for large language models (LLMs). LLMs exhibit exceptional semantic comprehension, deftly distinguishing between parameters and invariant tokens. We have conducted experiments on large-scale public datasets. Extensive evaluation demonstrates that Lemur achieves the state-of-the-art performance and impressive efficiency.
Adapting Open Information Extraction to Domain-Specific Relations
Soderland, Stephen (University of Washington) | Roof, Brendan (University of Washington) | Qin, Bo (University of Washington) | Xu, Shi (University of Washington) | Mausam, - (University of Washington) | Etzioni, Oren (University of Washington)
Information extraction (IE) can identify a set of relations from free text to support question answering (QA). Until recently, IE systems were domain-specific and needed a combination of manual engineering and supervised learning to adapt to each target domain. A new paradigm, Open IE operates on large text corpora without any manual tagging of relations, and indeed without any pre-specified relations. We explore the steps needed to adapt Open IE to a domain-specific ontology and demonstrate our approach of mapping domain-independent tuples to an ontology using domains from DARPA's Machine Reading Project.
Adapting Open Information Extraction to Domain-Specific Relations
Soderland, Stephen (University of Washington) | Roof, Brendan (University of Washington) | Qin, Bo (University of Washington) | Xu, Shi (University of Washington) | Mausam, - (University of Washington) | Etzioni, Oren (University of Washington)
Information extraction (IE) can identify a set of relations from free text to support question answering (QA). Until recently, IE systems were domain-specific and needed a combination of manual engineering and supervised learning to adapt to each target domain. A new paradigm, Open IE operates on large text corpora without any manual tagging of relations, and indeed without any pre-specified relations. Due to its open-domain and open-relation nature, Open IE is purely textual and is unable to relate the surface forms to an ontology, if known in advance. We explore the steps needed to adapt Open IE to a domain-specific ontology and demonstrate our approach of mapping domain-independent tuples to an ontology using domains from DARPA’s Machine Reading Project. Our system achieves precision over 0.90 from as few as 8 training examples for an NFL-scoring domain.