Xu, Ruifeng
Targeted Distillation for Sentiment Analysis
Zhang, Yice, Xie, Guangyu, Lin, Jingjie, Bao, Jianzhu, Wang, Qianlong, Zeng, Xi, Xu, Ruifeng
This paper presents a compact model that achieves strong sentiment analysis capabilities through targeted distillation from advanced large language models (LLMs). Our methodology decouples the distillation target into two key components: sentiment-related knowledge and task alignment. To transfer these components, we propose a two-stage distillation framework. The first stage, knowledge-driven distillation (\textsc{KnowDist}), transfers sentiment-related knowledge to enhance fundamental sentiment analysis capabilities. The second stage, in-context learning distillation (\textsc{ICLDist}), transfers task-specific prompt-following abilities to optimize task alignment. For evaluation, we introduce \textsc{SentiBench}, a comprehensive sentiment analysis benchmark comprising 3 task categories across 12 datasets. Experiments on this benchmark demonstrate that our model effectively balances model size and performance, showing strong competitiveness compared to existing small-scale LLMs.
xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking
Lee, Sunbowen, Ni, Shiwen, Wei, Chi, Li, Shuaimin, Fan, Liyang, Argha, Ahmadreza, Alinejad-Rokny, Hamid, Xu, Ruifeng, Gong, Yicheng, Yang, Min
Safety alignment mechanism are essential for preventing large language models (LLMs) from generating harmful information or unethical content. However, cleverly crafted prompts can bypass these safety measures without accessing the model's internal parameters, a phenomenon known as black-box jailbreak. Existing heuristic black-box attack methods, such as genetic algorithms, suffer from limited effectiveness due to their inherent randomness, while recent reinforcement learning (RL) based methods often lack robust and informative reward signals. To address these challenges, we propose a novel black-box jailbreak method leveraging RL, which optimizes prompt generation by analyzing the embedding proximity between benign and malicious prompts. This approach ensures that the rewritten prompts closely align with the intent of the original prompts while enhancing the attack's effectiveness. Furthermore, we introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success. Experimental results show the superiority of our approach, achieving state-of-the-art (SOTA) performance on several prominent open and closed-source LLMs, including Qwen2.5-7B-Instruct, Llama3.1-8B-Instruct, and GPT-4o-0806. Our method sets a new benchmark in jailbreak attack effectiveness, highlighting potential vulnerabilities in LLMs. The codebase for this work is available at https://github.com/Aegis1863/xJailbreak.
AutoCBT: An Autonomous Multi-agent Framework for Cognitive Behavioral Therapy in Psychological Counseling
Xu, Ancheng, Yang, Di, Li, Renhao, Zhu, Jingwei, Tan, Minghuan, Yang, Min, Qiu, Wanxin, Ma, Mingchen, Wu, Haihong, Li, Bingyu, Sha, Feng, Li, Chengming, Hu, Xiping, Qu, Qiang, Wong, Derek F., Xu, Ruifeng
Traditional in-person psychological counseling remains primarily niche, often chosen by individuals with psychological issues, while online automated counseling offers a potential solution for those hesitant to seek help due to feelings of shame. Cognitive Behavioral Therapy (CBT) is an essential and widely used approach in psychological counseling. The advent of large language models (LLMs) and agent technology enables automatic CBT diagnosis and treatment. However, current LLM-based CBT systems use agents with a fixed structure, limiting their self-optimization capabilities, or providing hollow, unhelpful suggestions due to redundant response patterns. In this work, we utilize Quora-like and YiXinLi single-round consultation models to build a general agent framework that generates high-quality responses for single-turn psychological consultation scenarios. We use a bilingual dataset to evaluate the quality of single-response consultations generated by each framework. Then, we incorporate dynamic routing and supervisory mechanisms inspired by real psychological counseling to construct a CBT-oriented autonomous multi-agent framework, demonstrating its general applicability. Experimental results indicate that AutoCBT can provide higher-quality automated psychological counseling services.
Multi-Task Model Merging via Adaptive Weight Disentanglement
Xiong, Feng, Cheng, Runxi, Chen, Wang, Zhang, Zhanqiu, Guo, Yiwen, Yuan, Chun, Xu, Ruifeng
Model merging has recently gained attention as an economical and scalable approach to incorporate task-specific weights from various tasks into a unified multi-task model. For example, in Task Arithmetic (TA), adding the fine-tuned weights of different tasks can enhance the model's performance on those tasks, while subtracting them leads to task forgetting. Although TA is highly effective, interference among task still hampers the performance of the merged model. Existing methods for handling conflicts between task generally rely on empirical selection, resulting in suboptimal performance. In this paper, we introduce an Adaptive Weight Disentanglement method. We begin by theoretically proving that task vectors employed in model merging should be orthogonal to minimize interference among tasks. Guided by this insight, we initialize redundant vectors such that, when subtracted from the original task vectors, the resulting vectors exhibit increased orthogonality. Additionally, we impose an norm constraint on the redundant vectors to preserve the performance of the task-specific models. Experimental results demonstrate the effectiveness of our proposed technique: it successfully extracts redundant vectors, and after their subtraction, the task vectors not only retain robust performance but also achieve superior fusion outcomes. Our code is available at \href{https://github.com/FarisXiong/AWD.git}{https://github.com/FarisXiong/AWD.git}.
Distilling Fine-grained Sentiment Understanding from Large Language Models
Zhang, Yice, Xie, Guangyu, Xu, Hongling, Hou, Kaiheng, Bao, Jianzhu, Wang, Qianlong, Chen, Shiwei, Xu, Ruifeng
Fine-grained sentiment analysis (FSA) aims to extract and summarize user opinions from vast opinionated text. Recent studies demonstrate that large language models (LLMs) possess exceptional sentiment understanding capabilities. However, directly deploying LLMs for FSA applications incurs high inference costs. Therefore, this paper investigates the distillation of fine-grained sentiment understanding from LLMs into small language models (SLMs). We prompt LLMs to examine and interpret the sentiments of given reviews and then utilize the generated content to pretrain SLMs. Additionally, we develop a comprehensive FSA benchmark to evaluate both SLMs and LLMs. Extensive experiments on this benchmark reveal that: (1) distillation significantly enhances the performance of SLMs in FSA tasks, achieving a 6.00\% improvement in $F_1$-score, and the distilled model can outperform Llama-2-7b with only 220M parameters; (2) distillation equips SLMs with excellent zero-shot sentiment classification capabilities, enabling them to match or even exceed their teacher models. These results suggest that distillation from LLMs is a highly promising direction for FSA. We will release our code, data, and pretrained model weights at https://github.com/HITSZ-HLT/FSA-Distillation.
Correcting Large Language Model Behavior via Influence Function
Zhang, Han, Zhang, Zhuo, Zhang, Yi, Zhai, Yuanzhao, Peng, Hanyang, Lei, Yu, Yu, Yue, Wang, Hui, Liang, Bin, Gui, Lin, Xu, Ruifeng
Recent advancements in AI alignment techniques have significantly improved the alignment of large language models (LLMs) with static human preferences. However, the dynamic nature of human preferences can render some prior training data outdated or even erroneous, ultimately causing LLMs to deviate from contemporary human preferences and societal norms. Existing methodologies, whether they involve the curation of new data for continual alignment or the manual correction of outdated data for re-alignment, demand costly human resources. To address this challenge, we propose a novel approach, Large Language Model Behavior Correction with Influence Function Recall and Post-Training (LANCET), which requires no human involvement. LANCET consists of two phases: (1) using influence functions to identify the training data that significantly impact undesirable model outputs, and (2) applying an Influence function-driven Bregman Optimization (IBO) technique to adjust the model's behavior based on these influence distributions. Our experiments demonstrate that LANCET effectively and efficiently correct inappropriate behaviors of LLMs. Furthermore, LANCET can outperform methods that rely on collecting human preferences, and it enhances the interpretability of learning human preferences within LLMs.
DS$^2$-ABSA: Dual-Stream Data Synthesis with Label Refinement for Few-Shot Aspect-Based Sentiment Analysis
Xu, Hongling, Zhang, Yice, Wang, Qianlong, Xu, Ruifeng
Recently developed large language models (LLMs) have presented promising new avenues to address data scarcity in low-resource scenarios. In few-shot aspect-based sentiment analysis (ABSA), previous efforts have explored data augmentation techniques, which prompt LLMs to generate new samples by modifying existing ones. However, these methods fail to produce adequately diverse data, impairing their effectiveness. Besides, some studies apply in-context learning for ABSA by using specific instructions and a few selected examples as prompts. Though promising, LLMs often yield labels that deviate from task requirements. To overcome these limitations, we propose DS$^2$-ABSA, a dual-stream data synthesis framework targeted for few-shot ABSA. It leverages LLMs to synthesize data from two complementary perspectives: \textit{key-point-driven} and \textit{instance-driven}, which effectively generate diverse and high-quality ABSA samples in low-resource settings. Furthermore, a \textit{label refinement} module is integrated to improve the synthetic labels. Extensive experiments demonstrate that DS$^2$-ABSA significantly outperforms previous few-shot ABSA solutions and other LLM-oriented data generation methods.
DualCoTs: Dual Chain-of-Thoughts Prompting for Sentiment Lexicon Expansion of Idioms
Niu, Fuqiang, Tan, Minghuan, Zhang, Bowen, Yang, Min, Xu, Ruifeng
Idioms represent a ubiquitous vehicle for conveying sentiments in the realm of everyday discourse, rendering the nuanced analysis of idiom sentiment crucial for a comprehensive understanding of emotional expression within real-world texts. Nevertheless, the existing corpora dedicated to idiom sentiment analysis considerably limit research in text sentiment analysis. In this paper, we propose an innovative approach to automatically expand the sentiment lexicon for idioms, leveraging the capabilities of large language models through the application of Chain-of-Thought prompting. To demonstrate the effectiveness of this approach, we integrate multiple existing resources and construct an emotional idiom lexicon expansion dataset (called EmoIdiomE), which encompasses a comprehensive repository of Chinese and English idioms. Then we designed the Dual Chain-of-Thoughts (DualCoTs) method, which combines insights from linguistics and psycholinguistics, to demonstrate the effectiveness of using large models to automatically expand the sentiment lexicon for idioms. Experiments show that DualCoTs is effective in idioms sentiment lexicon expansion in both Chinese and English. For reproducibility, we will release the data and code upon acceptance.
Mitigating Biases of Large Language Models in Stance Detection with Calibration
Li, Ang, Zhao, Jingqian, Liang, Bin, Gui, Lin, Wang, Hui, Zeng, Xi, Liang, Xingwei, Wong, Kam-Fai, Xu, Ruifeng
Large language models (LLMs) have achieved remarkable progress in many natural language processing tasks. However, our experiment reveals that, in stance detection tasks, LLMs may generate biased stances due to sentiment-stance spurious correlations and preference towards certain individuals and topics, thus harming their performance. Therefore, in this paper, we propose to Mitigate Biases of LLMs in stance detection with Calibration (MB-Cal). To be specific, a novel calibration network is devised to calibrate potential bias in the stance prediction of LLMs. Further, to address the challenge of effectively learning bias representations and the difficulty in the generalizability of debiasing, we construct counterfactual augmented data. This approach enhances the calibration network, facilitating the debiasing and out-of-domain generalization. Experimental results on in-target and zero-shot stance detection tasks show that the proposed MB-Cal can effectively mitigate biases of LLMs, achieving state-of-the-art results.
II-Bench: An Image Implication Understanding Benchmark for Multimodal Large Language Models
Liu, Ziqiang, Fang, Feiteng, Feng, Xi, Du, Xinrun, Zhang, Chenhao, Wang, Zekun, Bai, Yuelin, Zhao, Qixuan, Fan, Liyang, Gan, Chengguang, Lin, Hongquan, Li, Jiaming, Ni, Yuansheng, Wu, Haihong, Narsupalli, Yaswanth, Zheng, Zhigang, Li, Chengming, Hu, Xiping, Xu, Ruifeng, Chen, Xiaojun, Yang, Min, Liu, Jiaheng, Liu, Ruibo, Huang, Wenhao, Zhang, Ge, Ni, Shiwen
The rapid advancements in the development of multimodal large language models (MLLMs) have consistently led to new breakthroughs on various benchmarks. In response, numerous challenging and comprehensive benchmarks have been proposed to more accurately assess the capabilities of MLLMs. However, there is a dearth of exploration of the higher-order perceptual capabilities of MLLMs. To fill this gap, we propose the Image Implication understanding Benchmark, II-Bench, which aims to evaluate the model's higher-order perception of images. Through extensive experiments on II-Bench across multiple MLLMs, we have made significant findings. Initially, a substantial gap is observed between the performance of MLLMs and humans on II-Bench. The pinnacle accuracy of MLLMs attains 74.8%, whereas human accuracy averages 90%, peaking at an impressive 98%. Subsequently, MLLMs perform worse on abstract and complex images, suggesting limitations in their ability to understand high-level semantics and capture image details. Finally, it is observed that most models exhibit enhanced accuracy when image sentiment polarity hints are incorporated into the prompts. This observation underscores a notable deficiency in their inherent understanding of image sentiment. We believe that II-Bench will inspire the community to develop the next generation of MLLMs, advancing the journey towards expert artificial general intelligence (AGI). II-Bench is publicly available at https://huggingface.co/datasets/m-a-p/II-Bench.