Goto

Collaborating Authors

 Xu, Qiangeng


Gaussian3Diff: 3D Gaussian Diffusion for 3D Full Head Synthesis and Editing

arXiv.org Artificial Intelligence

We present a novel framework for generating photorealistic Editing capabilities for 3D-aware GANs have also been 3D human head and subsequently manipulating achieved through latent space auto-decoding, altering a 2D and reposing them with remarkable flexibility. The proposed semantic segmentation [62, 63], or modifying the underlying approach leverages an implicit function representation geometry scaffold [64]. However, generation and editing of 3D human heads, employing 3D Gaussians anchored quality tends to be unstable and less diversified due to on a parametric face model. To enhance representational the inherent limitation of GANs, and detailed-level editing capabilities and encode spatial information, we is not well supported due to feature entanglement in the embed a lightweight tri-plane payload within each Gaussian compact latent space or tri-plane representations.


Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

arXiv.org Artificial Intelligence

Advances in LiDAR sensors provide rich 3D data that supports 3D scene understanding. However, due to occlusion and signal miss, LiDAR point clouds are in practice 2.5D as they cover only partial underlying shapes, which poses a fundamental challenge to 3D perception. To tackle the challenge, we present a novel LiDAR-based 3D object detection model, dubbed Behind the Curtain Detector (BtcDet), which learns the object shape priors and estimates the complete object shapes that are partially occluded (curtained) in point clouds. BtcDet first identifies the regions that are affected by occlusion and signal miss. In these regions, our model predicts the probability of occupancy that indicates if a region contains object shapes. Integrated with this probability map, BtcDet can generate high-quality 3D proposals. Finally, the probability of occupancy is also integrated into a proposal refinement module to generate the final bounding boxes. Extensive experiments on the KITTI Dataset and the Waymo Open Dataset demonstrate the effectiveness of BtcDet. Particularly, for the 3D detection of both cars and cyclists on the KITTI benchmark, BtcDet surpasses all of the published state-of-the-art methods by remarkable margins. Code is released (https://github.com/Xharlie/BtcDet}{https://github.com/Xharlie/BtcDet).


Stochastic Video Long-term Interpolation

arXiv.org Artificial Intelligence

In this paper, we introduce a stochastic learning framework for long-term video interpolation. While most existing interpolation models require two reference frames with a short interval, our framework predicts a plausible intermediate sequence between a long interval. Our model consists of two parts: (1) a deterministic estimation to guarantee the spatial and temporal coherency among frames, (2) a stochastic sampling process to generate dynamics from inferred distributions. Experimental results show that our model is able to generate sharp and clear sequences with variations. Moreover, motions in the generated sequence are realistic and able to transfer smoothly from the referenced start frame to the end frame.