Goto

Collaborating Authors

 Xu, Ning


Progressive Purification for Instance-Dependent Partial Label Learning

arXiv.org Artificial Intelligence

Partial label learning (PLL) aims to train multiclass classifiers from the examples each annotated with a set of candidate labels where a fixed but unknown candidate label is correct. In the last few years, the instance-independent generation process of candidate labels has been extensively studied, on the basis of which many theoretical advances have been made in PLL. Nevertheless, the candidate labels are always instance-dependent in practice and there is no theoretical guarantee that the model trained on the instance-dependent PLL examples can converge to an ideal one. In this paper, a theoretically grounded and practically effective approach named POP, i.e. PrOgressive Purification for instance-dependent partial label learning, is proposed. Specifically, POP updates the learning model and purifies each candidate label set progressively in every epoch. Theoretically, we prove that POP enlarges the region appropriately fast where the model is reliable, and eventually approximates the Bayes optimal classifier with mild assumptions. Technically, POP is flexible with arbitrary PLL losses and could improve the performance of the previous PLL losses in the instance-dependent case. Experiments on the benchmark datasets and the real-world datasets validate the effectiveness of the proposed method.


Adaptive Cross-Layer Attention for Image Restoration

arXiv.org Artificial Intelligence

Non-local attention module has been proven to be crucial for image restoration. Conventional non-local attention processes features of each layer separately, so it risks missing correlation between features among different layers. To address this problem, we aim to design attention modules that aggregate information from different layers. Instead of finding correlated key pixels within the same layer, each query pixel is encouraged to attend to key pixels at multiple previous layers of the network. In order to efficiently embed such attention design into neural network backbones, we propose a novel Adaptive Cross-Layer Attention (ACLA) module. Two adaptive designs are proposed for ACLA: (1) adaptively selecting the keys for non-local attention at each layer; (2) automatically searching for the insertion locations for ACLA modules. By these two adaptive designs, ACLA dynamically selects a flexible number of keys to be aggregated for non-local attention at previous layer while maintaining a compact neural network with compelling performance. Extensive experiments on image restoration tasks, including single image super-resolution, image denoising, image demosaicing, and image compression artifacts reduction, validate the effectiveness and efficiency of ACLA. The code of ACLA is available at \url{https://github.com/SDL-ASU/ACLA}.


Learning From Biased Soft Labels

arXiv.org Artificial Intelligence

Knowledge distillation has been widely adopted in a variety of tasks and has achieved remarkable successes. Since its inception, many researchers have been intrigued by the dark knowledge hidden in the outputs of the teacher model. Recently, a study has demonstrated that knowledge distillation and label smoothing can be unified as learning from soft labels. Consequently, how to measure the effectiveness of the soft labels becomes an important question. Most existing theories have stringent constraints on the teacher model or data distribution, and many assumptions imply that the soft labels are close to the ground-truth labels. This paper studies whether biased soft labels are still effective. We present two more comprehensive indicators to measure the effectiveness of such soft labels. Based on the two indicators, we give sufficient conditions to ensure biased soft label based learners are classifier-consistent and ERM learnable. The theory is applied to three weakly-supervised frameworks. Experimental results validate that biased soft labels can also teach good students, which corroborates the soundness of the theory.


Decompositional Generation Process for Instance-Dependent Partial Label Learning

arXiv.org Artificial Intelligence

Partial label learning (PLL) is a typical weakly supervised learning problem, where each training example is associated with a set of candidate labels among which only one is true. Most existing PLL approaches assume that the incorrect labels in each training example are randomly picked as the candidate labels and model the generation process of the candidate labels in a simple way. However, these approaches usually do not perform as well as expected due to the fact that the generation process of the candidate labels is always instance-dependent. Therefore, it deserves to be modeled in a refined way. In this paper, we consider instance-dependent PLL and assume that the generation process of the candidate labels could decompose into two sequential parts, where the correct label emerges first in the mind of the annotator but then the incorrect labels related to the feature are also selected with the correct label as candidate labels due to uncertainty of labeling. Motivated by this consideration, we propose a novel PLL method that performs Maximum A Posterior (MAP) based on an explicitly modeled generation process of candidate labels via decomposed probability distribution models. Extensive experiments on manually corrupted benchmark datasets and real-world datasets validate the effectiveness of the proposed method. Source code is available at https://github.com/palm-ml/idgp.


On the Robustness of Average Losses for Partial-Label Learning

arXiv.org Artificial Intelligence

Partial-label learning (PLL) utilizes instances with PLs, where a PL includes several candidate labels but only one is the true label (TL). In PLL, identification-based strategy (IBS) purifies each PL on the fly to select the (most likely) TL for training; average-based strategy (ABS) treats all candidate labels equally for training and let trained models be able to predict TL. Although PLL research has focused on IBS for better performance, ABS is also worthy of study since modern IBS behaves like ABS in the beginning of training to prepare for PL purification and TL selection. In this paper, we analyze why ABS was unsatisfactory and propose how to improve it. Theoretically, we formalize five problem settings of PLL and prove that average PL losses (APLLs) with bounded multi-class losses are always robust, while APLLs with unbounded losses may be non-robust, which is the first robustness analysis for PLL. Experimentally, we have two promising findings: ABS using bounded losses can match/exceed state-of-the-art performance of IBS using unbounded losses; after using robust APLLs to warm start, IBS can further improve upon itself. Our work draws attention to ABS research, which can in turn boost IBS and push forward the whole PLL.


Learngene: From Open-World to Your Learning Task

arXiv.org Artificial Intelligence

Although deep learning has made significant progress on fixed large-scale datasets, it typically encounters challenges regarding improperly detecting new/unseen classes in the open-world classification, over-parametrized, and overfitting small samples. In contrast, biological systems can overcome the above difficulties very well. Individuals inherit an innate gene from collective creatures that have evolved over hundreds of millions of years, and can learn new skills through a few examples. Inspired by this, we propose a practical collective-individual paradigm where open-world tasks are trained in sequence using an evolution (expandable) network. To be specific, we innovatively introduce learngene that inherits the meta-knowledge from the collective model and reconstructs a new lightweight individual model for the target task, to realize the collective-individual paradigm. Particularly, we present a novel criterion that can discover the learngene in the collective model, according to the gradient information. Finally, the individual model is trained only with a few samples in the absence of the source data. We demonstrate the effectiveness of our approach in an extensive empirical study and theoretical analysis.


Compact Learning for Multi-Label Classification

arXiv.org Machine Learning

Multi-label classification (MLC) studies the problem where each instance is associated with multiple relevant labels, which leads to the exponential growth of output space. MLC encourages a popular framework named label compression (LC) for capturing label dependency with dimension reduction. Nevertheless, most existing LC methods failed to consider the influence of the feature space or misguided by original problematic features, so that may result in performance degeneration. In this paper, we present a compact learning (CL) framework to embed the features and labels simultaneously and with mutual guidance. The proposal is a versatile concept, hence the embedding way is arbitrary and independent of the subsequent learning process. Following its spirit, a simple yet effective implementation called compact multi-label learning (CMLL) is proposed to learn a compact low-dimensional representation for both spaces. CMLL maximizes the dependence between the embedded spaces of the labels and features, and minimizes the loss of label space recovery concurrently. Theoretically, we provide a general analysis for different embedding methods. Practically, we conduct extensive experiments to validate the effectiveness of the proposed method.


Video Question Answering on Screencast Tutorials

arXiv.org Artificial Intelligence

This paper presents a new video question answering task on screencast tutorials. We introduce a dataset including question, answer and context triples from the tutorial videos for a software. Unlike other video question answering works, all the answers in our dataset are grounded to the domain knowledge base. An one-shot recognition algorithm is designed to extract the visual cues, which helps enhance the performance of video question answering. We also propose several baseline neural network architectures based on various aspects of video contexts from the dataset. The experimental results demonstrate that our proposed models significantly improve the question answering performances by incorporating multi-modal contexts and domain knowledge.


Rademacher upper bounds for cross-validation errors with an application to the lasso

arXiv.org Machine Learning

We establish a general upper bound for $K$-fold cross-validation ($K$-CV) errors that can be adapted to many $K$-CV-based estimators and learning algorithms. Based on Rademacher complexity of the model and the Orlicz-$\Psi_{\nu}$ norm of the error process, the CV error upper bound applies to both light-tail and heavy-tail error distributions. We also extend the CV error upper bound to $\beta$-mixing data using the technique of independent blocking. We provide a Python package (\texttt{CVbound}, \url{https://github.com/isaac2math}) for computing the CV error upper bound in $K$-CV-based algorithms. Using the lasso as an example, we demonstrate in simulations that the upper bounds are tight and stable across different parameter settings and random seeds. As well as accurately bounding the CV errors for the lasso, the minimizer of the new upper bounds can be used as a criterion for variable selection. Compared with the CV-error minimizer, simulations show that tuning the lasso penalty parameter according to the minimizer of the upper bound yields a more sparse and more stable model that retains all of the relevant variables.


Ultrahigh dimensional instrument detection using graph learning: an application to high dimensional GIS-census data for house pricing

arXiv.org Machine Learning

The exogeneity bias and instrument validation have always been critical topics in statistics, machine learning and biostatistics. In the era of big data, such issues typically come with dimensionality issue and, hence, require even more attention than ever. In this paper we ensemble two well-known tools from machine learning and biostatistics -- stable variable selection and random graph -- and apply them to estimating the house pricing mechanics and the follow-up socio-economic effect on the 2010 Sydney house data. The estimation is conducted on an over-200-gigabyte ultrahigh dimensional database consisting of local education data, GIS information, census data, house transaction and other socio-economic records. The technique ensemble carefully improves the variable selection sparisty, stability and robustness to high dimensionality, complicated causal structures and the consequent multicollinearity, which is ultimately helpful on the data-driven recovery of a sparse and intuitive causal structure. The new ensemble also reveals its efficiency and effectiveness on endogeneity detection, instrument validation, weak instruments pruning and selection of proper instruments. From the perspective of machine learning, the estimation result both aligns with and confirms the facts of Sydney house market, the classical economic theories and the previous findings of simultaneous equations modeling. Moreover, the estimation result is totally consistent with and supported by the classical econometric tool like two-stage least square regression and different instrument tests (the code can be found at https://github.com/isaac2math/solar_graph_learning).