Xu, Ning
Reduction-based Pseudo-label Generation for Instance-dependent Partial Label Learning
Qiao, Congyu, Xu, Ning, Hu, Yihao, Geng, Xin
Instance-dependent Partial Label Learning (ID-PLL) aims to learn a multi-class predictive model given training instances annotated with candidate labels related to features, among which correct labels are hidden fixed but unknown. The previous works involve leveraging the identification capability of the training model itself to iteratively refine supervision information. However, these methods overlook a critical aspect of ID-PLL: the training model is prone to overfitting on incorrect candidate labels, thereby providing poor supervision information and creating a bottleneck in training. In this paper, we propose to leverage reduction-based pseudo-labels to alleviate the influence of incorrect candidate labels and train our predictive model to overcome this bottleneck. Specifically, reduction-based pseudo-labels are generated by performing weighted aggregation on the outputs of a multi-branch auxiliary model, with each branch trained in a label subspace that excludes certain labels. This approach ensures that each branch explicitly avoids the disturbance of the excluded labels, allowing the pseudo-labels provided for instances troubled by these excluded labels to benefit from the unaffected branches. Theoretically, we demonstrate that reduction-based pseudo-labels exhibit greater consistency with the Bayes optimal classifier compared to pseudo-labels directly generated from the predictive model.
ISPO: An Integrated Ontology of Symptom Phenotypes for Semantic Integration of Traditional Chinese Medical Data
Shu, Zixin, Hua, Rui, Yan, Dengying, Lu, Chenxia, Xu, Ning, Li, Jun, Zhu, Hui, Zhang, Jia, Zhao, Dan, Hui, Chenyang, Ye, Junqiu, Liao, Chu, Hao, Qi, Ye, Wen, Luo, Cheng, Wang, Xinyan, Cheng, Chuang, Li, Xiaodong, Liu, Baoyan, Zhou, Xiaji, Zhang, Runshun, Xu, Min, Zhou, Xuezhong
Symptom phenotypes are one of the key types of manifestations for diagnosis and treatment of various disease conditions. However, the diversity of symptom terminologies is one of the major obstacles hindering the analysis and knowledge sharing of various types of symptom-related medical data particularly in the fields of Traditional Chinese Medicine (TCM). Objective: This study aimed to construct an Integrated Ontology of symptom phenotypes (ISPO) to support the data mining of Chinese EMRs and real-world study in TCM field. Methods: To construct an integrated ontology of symptom phenotypes (ISPO), we manually annotated classical TCM textbooks and large-scale Chinese electronic medical records (EMRs) to collect symptom terms with support from a medical text annotation system. Furthermore, to facilitate the semantic interoperability between different terminologies, we incorporated public available biomedical vocabularies by manual mapping between Chinese terms and English terms with cross-references to source vocabularies. In addition, we evaluated the ISPO using independent clinical EMRs to provide a high-usable medical ontology for clinical data analysis. Results: By integrating 78,696 inpatient cases of EMRs, 5 biomedical vocabularies, 21 TCM books and dictionaries, ISPO provides 3,147 concepts, 23,475 terms, and 55,552 definition or contextual texts. Adhering to the taxonomical structure of the related anatomical systems of symptom phenotypes, ISPO provides 12 top-level categories and 79 middle-level sub-categories. The validation of data analysis showed the ISPO has a coverage rate of 95.35%, 98.53% and 92.66% for symptom terms with occurrence rates of 0.5% in additional three independent curated clinical datasets, which can demonstrate the significant value of ISPO in mapping clinical terms to ontologies.
Exploring Real World Map Change Generalization of Prior-Informed HD Map Prediction Models
Bateman, Samuel M., Xu, Ning, Zhao, H. Charles, Shalom, Yael Ben, Gong, Vince, Long, Greg, Maddern, Will
Building and maintaining High-Definition (HD) maps represents a large barrier to autonomous vehicle deployment. This, along with advances in modern online map detection models, has sparked renewed interest in the online mapping problem. However, effectively predicting online maps at a high enough quality to enable safe, driverless deployments remains a significant challenge. Recent work on these models proposes training robust online mapping systems using low quality map priors with synthetic perturbations in an attempt to simulate out-of-date HD map priors. In this paper, we investigate how models trained on these synthetically perturbed map priors generalize to performance on deployment-scale, real world map changes. We present a large-scale experimental study to determine which synthetic perturbations are most useful in generalizing to real world HD map changes, evaluated using multiple years of real-world autonomous driving data. We show there is still a substantial sim2real gap between synthetic prior perturbations and observed real-world changes, which limits the utility of current prior-informed HD map prediction models.
Rule-driven News Captioning
Xu, Ning, Zhang, Tingting, Tian, Hongshuo, Liu, An-An
News captioning task aims to generate sentences by describing named entities or concrete events for an image with its news article. Existing methods have achieved remarkable results by relying on the large-scale pre-trained models, which primarily focus on the correlations between the input news content and the output predictions. However, the news captioning requires adhering to some fundamental rules of news reporting, such as accurately describing the individuals and actions associated with the event. In this paper, we propose the rule-driven news captioning method, which can generate image descriptions following designated rule signal. Specifically, we first design the news-aware semantic rule for the descriptions. This rule incorporates the primary action depicted in the image (e.g., "performing") and the roles played by named entities involved in the action (e.g., "Agent" and "Place"). Second, we inject this semantic rule into the large-scale pre-trained model, BART, with the prefix-tuning strategy, where multiple encoder layers are embedded with news-aware semantic rule. Finally, we can effectively guide BART to generate news sentences that comply with the designated rule. Extensive experiments on two widely used datasets (i.e., GoodNews and NYTimes800k) demonstrate the effectiveness of our method.
How to Understand Named Entities: Using Common Sense for News Captioning
Xu, Ning, Wang, Yanhui, Zhang, Tingting, Tian, Hongshuo, Kankanhalli, Mohan, Liu, An-An
News captioning aims to describe an image with its news article body as input. It greatly relies on a set of detected named entities, including real-world people, organizations, and places. This paper exploits commonsense knowledge to understand named entities for news captioning. By ``understand'', we mean correlating the news content with common sense in the wild, which helps an agent to 1) distinguish semantically similar named entities and 2) describe named entities using words outside of training corpora. Our approach consists of three modules: (a) Filter Module aims to clarify the common sense concerning a named entity from two aspects: what does it mean? and what is it related to?, which divide the common sense into explanatory knowledge and relevant knowledge, respectively. (b) Distinguish Module aggregates explanatory knowledge from node-degree, dependency, and distinguish three aspects to distinguish semantically similar named entities. (c) Enrich Module attaches relevant knowledge to named entities to enrich the entity description by commonsense information (e.g., identity and social position). Finally, the probability distributions from both modules are integrated to generate the news captions. Extensive experiments on two challenging datasets (i.e., GoodNews and NYTimes) demonstrate the superiority of our method. Ablation studies and visualization further validate its effectiveness in understanding named entities.
Causality is all you need
Xu, Ning, Gao, Yifei, Tian, Hongshuo, Zhang, Yongdong, Liu, An-An
In the fundamental statistics course, students are taught to remember the well-known saying: "Correlation is not Causation". Till now, statistics (i.e., correlation) have developed various successful frameworks, such as Transformer and Pre-training large-scale models, which have stacked multiple parallel self-attention blocks to imitate a wide range of tasks. However, in the causation community, how to build an integrated causal framework still remains an untouched domain despite its excellent intervention capabilities. In this paper, we propose the Causal Graph Routing (CGR) framework, an integrated causal scheme relying entirely on the intervention mechanisms to reveal the cause-effect forces hidden in data. Specifically, CGR is composed of a stack of causal layers. Each layer includes a set of parallel deconfounding blocks from different causal graphs. We combine these blocks via the concept of the proposed sufficient cause, which allows the model to dynamically select the suitable deconfounding methods in each layer. CGR is implemented as the stacked networks, integrating no confounder, back-door adjustment, front-door adjustment, and probability of sufficient cause. We evaluate this framework on two classical tasks of CV and NLP. Experiments show CGR can surpass the current state-of-the-art methods on both Visual Question Answer and Long Document Classification tasks. In particular, CGR has great potential in building the "causal" pre-training large-scale model that effectively generalizes to diverse tasks. It will improve the machines' comprehension of causal relationships within a broader semantic space.
Can Class-Priors Help Single-Positive Multi-Label Learning?
Liu, Biao, Wang, Jie, Xu, Ning, Geng, Xin
Single-positive multi-label learning (SPMLL) is a typical weakly supervised multi-label learning problem, where each training example is annotated with only one positive label. Existing SPMLL methods typically assign pseudo-labels to unannotated labels with the assumption that prior probabilities of all classes are identical. However, the class-prior of each category may differ significantly in real-world scenarios, which makes the predictive model not perform as well as expected due to the unrealistic assumption on real-world application. To alleviate this issue, a novel framework named {\proposed}, i.e., Class-pRiors Induced Single-Positive multi-label learning, is proposed. Specifically, a class-priors estimator is introduced, which could estimate the class-priors that are theoretically guaranteed to converge to the ground-truth class-priors. In addition, based on the estimated class-priors, an unbiased risk estimator for classification is derived, and the corresponding risk minimizer could be guaranteed to approximately converge to the optimal risk minimizer on fully supervised data. Experimental results on ten MLL benchmark datasets demonstrate the effectiveness and superiority of our method over existing SPMLL approaches.
Unreliable Partial Label Learning with Recursive Separation
Shi, Yu, Xu, Ning, Yuan, Hua, Geng, Xin
Partial label learning (PLL) is a typical weakly supervised learning problem in which each instance is associated with a candidate label set, and among which only one is true. However, the assumption that the ground-truth label is always among the candidate label set would be unrealistic, as the reliability of the candidate label sets in real-world applications cannot be guaranteed by annotators. Therefore, a generalized PLL named Unreliable Partial Label Learning (UPLL) is proposed, in which the true label may not be in the candidate label set. Due to the challenges posed by unreliable labeling, previous PLL methods will experience a marked decline in performance when applied to UPLL. To address the issue, we propose a two-stage framework named Unreliable Partial Label Learning with Recursive Separation (UPLLRS). In the first stage, the self-adaptive recursive separation strategy is proposed to separate the training set into a reliable subset and an unreliable subset. In the second stage, a disambiguation strategy is employed to progressively identify the ground-truth labels in the reliable subset. Simultaneously, semi-supervised learning methods are adopted to extract valuable information from the unreliable subset. Our method demonstrates state-of-the-art performance as evidenced by experimental results, particularly in situations of high unreliability. Code and supplementary materials are available at https://github.com/dhiyu/UPLLRS.
Variational Label-Correlation Enhancement for Congestion Prediction
Liu, Biao, Qiao, Congyu, Xu, Ning, Geng, Xin, Zhu, Ziran, Yang, Jun
The physical design process of large-scale designs is a time-consuming task, often requiring hours to days to complete, with routing being the most critical and complex step. As the the complexity of Integrated Circuits (ICs) increases, there is an increased demand for accurate routing quality prediction. Accurate congestion prediction aids in identifying design flaws early on, thereby accelerating circuit design and conserving resources. Despite the advancements in current congestion prediction methodologies, an essential aspect that has been largely overlooked is the spatial label-correlation between different grids in congestion prediction. The spatial label-correlation is a fundamental characteristic of circuit design, where the congestion status of a grid is not isolated but inherently influenced by the conditions of its neighboring grids. In order to fully exploit the inherent spatial label-correlation between neighboring grids, we propose a novel approach, {\ours}, i.e., VAriational Label-Correlation Enhancement for Congestion Prediction, which considers the local label-correlation in the congestion map, associating the estimated congestion value of each grid with a local label-correlation weight influenced by its surrounding grids. {\ours} leverages variational inference techniques to estimate this weight, thereby enhancing the regression model's performance by incorporating spatial dependencies. Experiment results validate the superior effectiveness of {\ours} on the public available \texttt{ISPD2011} and \texttt{DAC2012} benchmarks using the superblue circuit line.
Towards Effective Visual Representations for Partial-Label Learning
Xia, Shiyu, Lv, Jiaqi, Xu, Ning, Niu, Gang, Geng, Xin
Under partial-label learning (PLL) where, for each training instance, only a set of ambiguous candidate labels containing the unknown true label is accessible, contrastive learning has recently boosted the performance of PLL on vision tasks, attributed to representations learned by contrasting the same/different classes of entities. Without access to true labels, positive points are predicted using pseudo-labels that are inherently noisy, and negative points often require large batches or momentum encoders, resulting in unreliable similarity information and a high computational overhead. In this paper, we rethink a state-of-the-art contrastive PLL method PiCO[24], inspiring the design of a simple framework termed PaPi (Partial-label learning with a guided Prototypical classifier), which demonstrates significant scope for improvement in representation learning, thus contributing to label disambiguation. PaPi guides the optimization of a prototypical classifier by a linear classifier with which they share the same feature encoder, thus explicitly encouraging the representation to reflect visual similarity between categories. It is also technically appealing, as PaPi requires only a few components in PiCO with the opposite direction of guidance, and directly eliminates the contrastive learning module that would introduce noise and consume computational resources. We empirically demonstrate that PaPi significantly outperforms other PLL methods on various image classification tasks.