Xu, Manjie
Learning to Plan with Personalized Preferences
Xu, Manjie, Yang, Xinyi, Liang, Wei, Zhang, Chi, Zhu, Yixin
Effective integration of AI agents into daily life requires them to understand and adapt to individual human preferences, particularly in collaborative roles. Although recent studies on embodied intelligence have advanced significantly, they typically adopt generalized approaches that overlook personal preferences in planning. We address this limitation by developing agents that not only learn preferences from few demonstrations but also learn to adapt their planning strategies based on these preferences. Our research leverages the observation that preferences, though implicitly expressed through minimal demonstrations, can generalize across diverse planning scenarios. To systematically evaluate this hypothesis, we introduce Preference-based Planning (PbP) benchmark, an embodied benchmark featuring hundreds of diverse preferences spanning from atomic actions to complex sequences. Our evaluation of SOTA methods reveals that while symbol-based approaches show promise in scalability, significant challenges remain in learning to generate and execute plans that satisfy personalized preferences. We further demonstrate that incorporating learned preferences as intermediate representations in planning significantly improves the agent's ability to construct personalized plans. These findings establish preferences as a valuable abstraction layer for adaptive planning, opening new directions for research in preference-guided plan generation and execution.
Towards Diverse and Efficient Audio Captioning via Diffusion Models
Xu, Manjie, Li, Chenxing, Tu, Xinyi, Ren, Yong, Fu, Ruibo, Liang, Wei, Yu, Dong
Initially, text descriptions are tokenized and transformed into discrete Audio captioning involves detecting sound events and describing token embeddings, which are subsequently mapped into the continuous acoustic scenes using natural language. The community has witnessed latent space in the form of word vectors using an embedding remarkable achievements in audio captioning through Autoregressive function. The audio content is converted into a Mel Spectrogram and (AR) models. Traditional encoder-decoder architectures [1]-[5] use encoded through a pre-trained audio encoder, followed by projection audio encoders to extract audio features and leverage language into the feature space via a lightweight projection module. The decoders to generate coherent descriptions. More recently, Large Language forward process adds noise to the text latent. In the backward process, Model (LLM)-based multimodal models [6]-[8] have emerged, the diffusion model predicts the noise added in each step, with driven by their superior captioning quality and diversity, thanks to the projected audio features conditioned as cross-attention.
Prompt-guided Precise Audio Editing with Diffusion Models
Xu, Manjie, Li, Chenxing, zhang, Duzhen, Su, Dan, Liang, Wei, Yu, Dong
Audio editing involves the arbitrary manipulation of audio content through precise control. Although text-guided diffusion models have made significant advancements in text-to-audio generation, they still face challenges in finding a flexible and precise way to modify target events within an audio track. We present a novel approach, referred to as PPAE, which serves as a general module for diffusion models and enables precise audio editing. The editing is based on the input textual prompt only and is entirely training-free. We exploit the cross-attention maps of diffusion models to facilitate accurate local editing and employ a hierarchical local-global pipeline to ensure a smoother editing process. Experimental results highlight the effectiveness of our method in various editing tasks.
Active Reasoning in an Open-World Environment
Xu, Manjie, Jiang, Guangyuan, Liang, Wei, Zhang, Chi, Zhu, Yixin
Recent advances in vision-language learning have achieved notable success on complete-information question-answering datasets through the integration of extensive world knowledge. Yet, most models operate passively, responding to questions based on pre-stored knowledge. In stark contrast, humans possess the ability to actively explore, accumulate, and reason using both newfound and existing information to tackle incomplete-information questions. In response to this gap, we introduce $Conan$, an interactive open-world environment devised for the assessment of active reasoning. $Conan$ facilitates active exploration and promotes multi-round abductive inference, reminiscent of rich, open-world settings like Minecraft. Diverging from previous works that lean primarily on single-round deduction via instruction following, $Conan$ compels agents to actively interact with their surroundings, amalgamating new evidence with prior knowledge to elucidate events from incomplete observations. Our analysis on $Conan$ underscores the shortcomings of contemporary state-of-the-art models in active exploration and understanding complex scenarios. Additionally, we explore Abduction from Deduction, where agents harness Bayesian rules to recast the challenge of abduction as a deductive process. Through $Conan$, we aim to galvanize advancements in active reasoning and set the stage for the next generation of artificial intelligence agents adept at dynamically engaging in environments.
Evaluating and Inducing Personality in Pre-trained Language Models
Jiang, Guangyuan, Xu, Manjie, Zhu, Song-Chun, Han, Wenjuan, Zhang, Chi, Zhu, Yixin
Standardized and quantified evaluation of machine behaviors is a crux of understanding LLMs. In this study, we draw inspiration from psychometric studies by leveraging human personality theory as a tool for studying machine behaviors. Originating as a philosophical quest for human behaviors, the study of personality delves into how individuals differ in thinking, feeling, and behaving. Toward building and understanding human-like social machines, we are motivated to ask: Can we assess machine behaviors by leveraging human psychometric tests in a principled and quantitative manner? If so, can we induce a specific personality in LLMs? To answer these questions, we introduce the Machine Personality Inventory (MPI) tool for studying machine behaviors; MPI follows standardized personality tests, built upon the Big Five Personality Factors (Big Five) theory and personality assessment inventories. By systematically evaluating LLMs with MPI, we provide the first piece of evidence demonstrating the efficacy of MPI in studying LLMs behaviors. We further devise a Personality Prompting (P^2) method to induce LLMs with specific personalities in a controllable way, capable of producing diverse and verifiable behaviors. We hope this work sheds light on future studies by adopting personality as the essential indicator for various downstream tasks, and could further motivate research into equally intriguing human-like machine behaviors.
Interactive Visual Reasoning under Uncertainty
Xu, Manjie, Jiang, Guangyuan, Liang, Wei, Zhang, Chi, Zhu, Yixin
One of the fundamental cognitive abilities of humans is to quickly resolve uncertainty by generating hypotheses and testing them via active trials. Encountering a novel phenomenon accompanied by ambiguous cause-effect relationships, humans make hypotheses against data, conduct inferences from observation, test their theory via experimentation, and correct the proposition if inconsistency arises. These iterative processes persist until the underlying mechanism becomes clear. In this work, we devise the IVRE (pronounced as "ivory") environment for evaluating artificial agents' reasoning ability under uncertainty. IVRE is an interactive environment featuring rich scenarios centered around Blicket detection. Agents in IVRE are placed into environments with various ambiguous action-effect pairs and asked to determine each object's role. They are encouraged to propose effective and efficient experiments to validate their hypotheses based on observations and actively gather new information. The game ends when all uncertainties are resolved or the maximum number of trials is consumed. By evaluating modern artificial agents in IVRE, we notice a clear failure of today's learning methods compared to humans. Such inefficacy in interactive reasoning ability under uncertainty calls for future research in building human-like intelligence.
MEWL: Few-shot multimodal word learning with referential uncertainty
Jiang, Guangyuan, Xu, Manjie, Xin, Shiji, Liang, Wei, Peng, Yujia, Zhang, Chi, Zhu, Yixin
Without explicit feedback, humans can rapidly learn the meaning of words. Children can acquire a new word after just a few passive exposures, a process known as fast mapping. This word learning capability is believed to be the most fundamental building block of multimodal understanding and reasoning. Despite recent advancements in multimodal learning, a systematic and rigorous evaluation is still missing for human-like word learning in machines. To fill in this gap, we introduce the MachinE Word Learning (MEWL) benchmark to assess how machines learn word meaning in grounded visual scenes. MEWL covers human's core cognitive toolkits in word learning: cross-situational reasoning, bootstrapping, and pragmatic learning. Specifically, MEWL is a few-shot benchmark suite consisting of nine tasks for probing various word learning capabilities. These tasks are carefully designed to be aligned with the children's core abilities in word learning and echo the theories in the developmental literature. By evaluating multimodal and unimodal agents' performance with a comparative analysis of human performance, we notice a sharp divergence in human and machine word learning. We further discuss these differences between humans and machines and call for human-like few-shot word learning in machines.
To think inside the box, or to think out of the box? Scientific discovery via the reciprocation of insights and concepts
Shi, Yu-Zhe, Xu, Manjie, Han, Wenjuan, Zhu, Yixin
If scientific discovery is one of the main driving forces of human progress, insight is the fuel for the engine, which has long attracted behavior-level research to understand and model its underlying cognitive process. However, current tasks that abstract scientific discovery mostly focus on the emergence of insight, ignoring the special role played by domain knowledge. In this concept paper, we view scientific discovery as an interplay between $thinking \ out \ of \ the \ box$ that actively seeks insightful solutions and $thinking \ inside \ the \ box$ that generalizes on conceptual domain knowledge to keep correct. Accordingly, we propose Mindle, a semantic searching game that triggers scientific-discovery-like thinking spontaneously, as infrastructure for exploring scientific discovery on a large scale. On this basis, the meta-strategies for insights and the usage of concepts can be investigated reciprocally. In the pilot studies, several interesting observations inspire elaborated hypotheses on meta-strategies, context, and individual diversity for further investigations.
On the Complexity of Bayesian Generalization
Shi, Yu-Zhe, Xu, Manjie, Hopcroft, John E., He, Kun, Tenenbaum, Joshua B., Zhu, Song-Chun, Wu, Ying Nian, Han, Wenjuan, Zhu, Yixin
We consider concept generalization at a large scale in the diverse and natural visual spectrum. Established computational modes (i.e., rule-based or similarity-based) are primarily studied isolated and focus on confined and abstract problem spaces. In this work, we study these two modes when the problem space scales up, and the $complexity$ of concepts becomes diverse. Specifically, at the $representational \ level$, we seek to answer how the complexity varies when a visual concept is mapped to the representation space. Prior psychology literature has shown that two types of complexities (i.e., subjective complexity and visual complexity) (Griffiths and Tenenbaum, 2003) build an inverted-U relation (Donderi, 2006; Sun and Firestone, 2021). Leveraging Representativeness of Attribute (RoA), we computationally confirm the following observation: Models use attributes with high RoA to describe visual concepts, and the description length falls in an inverted-U relation with the increment in visual complexity. At the $computational \ level$, we aim to answer how the complexity of representation affects the shift between the rule- and similarity-based generalization. We hypothesize that category-conditioned visual modeling estimates the co-occurrence frequency between visual and categorical attributes, thus potentially serving as the prior for the natural visual world. Experimental results show that representations with relatively high subjective complexity outperform those with relatively low subjective complexity in the rule-based generalization, while the trend is the opposite in the similarity-based generalization.