Goto

Collaborating Authors

 Xu, Lu


RFUAV: A Benchmark Dataset for Unmanned Aerial Vehicle Detection and Identification

arXiv.org Artificial Intelligence

In this paper, we propose RFUAV as a new benchmark dataset for radio-frequency based (RF-based) unmanned aerial vehicle (UAV) identification and address the following challenges: Firstly, many existing datasets feature a restricted variety of drone types and insufficient volumes of raw data, which fail to meet the demands of practical applications. Secondly, existing datasets often lack raw data covering a broad range of signal-to-noise ratios (SNR), or do not provide tools for transforming raw data to different SNR levels. This limitation undermines the validity of model training and evaluation. Lastly, many existing datasets do not offer open-access evaluation tools, leading to a lack of unified evaluation standards in current research within this field. RFUAV comprises approximately 1.3 TB of raw frequency data collected from 37 distinct UAVs using the Universal Software Radio Peripheral (USRP) device in real-world environments. Through in-depth analysis of the RF data in RFUAV, we define a drone feature sequence called RF drone fingerprint, which aids in distinguishing drone signals. In addition to the dataset, RFUAV provides a baseline preprocessing method and model evaluation tools. Rigorous experiments demonstrate that these preprocessing methods achieve state-of-the-art (SOTA) performance using the provided evaluation tools. The RFUAV dataset and baseline implementation are publicly available at https://github.com/kitoweeknd/RFUAV/.


PROXYQA: An Alternative Framework for Evaluating Long-Form Text Generation with Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have exhibited remarkable success in long-form context comprehension tasks. However, their capacity to generate long contents, such as reports and articles, remains insufficiently explored. Current benchmarks do not adequately assess LLMs' ability to produce informative and comprehensive content, necessitating a more rigorous evaluation approach. In this study, we introduce \textsc{ProxyQA}, a framework for evaluating long-form text generation, comprising in-depth human-curated \textit{meta-questions} spanning various domains. Each meta-question contains corresponding \textit{proxy-questions} with annotated answers. LLMs are prompted to generate extensive content in response to these meta-questions. Utilizing an evaluator and incorporating generated content as background context, \textsc{ProxyQA} evaluates the quality of generated content based on the evaluator's performance in answering the \textit{proxy-questions}. We examine multiple LLMs, emphasizing \textsc{ProxyQA}'s demanding nature as a high-quality assessment tool. Human evaluation demonstrates that evaluating through \textit{proxy-questions} is a highly self-consistent and human-criteria-correlated validation method. The dataset and leaderboard will be available at \url{https://github.com/Namco0816/ProxyQA}.


Parameter-Efficient Conversational Recommender System as a Language Processing Task

arXiv.org Artificial Intelligence

Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation. Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items. This combination of multiple components suffers from a cumbersome training process, and leads to semantic misalignment issues between dialogue generation and item recommendation. In this paper, we represent items in natural language and formulate CRS as a natural language processing task. Accordingly, we leverage the power of pre-trained language models to encode items, understand user intent via conversation, perform item recommendation through semantic matching, and generate dialogues. As a unified model, our PECRS (Parameter-Efficient CRS), can be optimized in a single stage, without relying on non-textual metadata such as a knowledge graph. Experiments on two benchmark CRS datasets, ReDial and INSPIRED, demonstrate the effectiveness of PECRS on recommendation and conversation. Our code is available at: https://github.com/Ravoxsg/efficient_unified_crs.


The Memory Perturbation Equation: Understanding Model's Sensitivity to Data

arXiv.org Machine Learning

Understanding model's sensitivity to its training data is crucial but can also be challenging and costly, especially during training. To simplify such issues, we present the Memory-Perturbation Equation (MPE) which relates model's sensitivity to perturbation in its training data. Derived using Bayesian principles, the MPE unifies existing sensitivity measures, generalizes them to a wide-variety of models and algorithms, and unravels useful properties regarding sensitivities. Our empirical results show that sensitivity estimates obtained during training can be used to faithfully predict generalization on unseen test data. The proposed equation is expected to be useful for future research on robust and adaptive learning.


Decomposed Prompt Tuning via Low-Rank Reparameterization

arXiv.org Artificial Intelligence

While prompt tuning approaches have achieved competitive performance with high efficiency, we observe that they invariably employ the same initialization process, wherein the soft prompt is either randomly initialized or derived from an existing embedding vocabulary. In contrast to these conventional methods, this study aims to investigate an alternative way to derive soft prompt. Our empirical studies show that the soft prompt typically exhibits a low intrinsic rank characteristic. With such observations, we propose decomposed prompt tuning, a novel approach that utilizes low-rank matrices to initialize the soft prompt. Through the low-rank reparameterization, our method significantly reduces the number of trainable parameters while maintaining effectiveness. Experimental results on the SuperGLUE benchmark in both high-resource and low-resource scenarios demonstrate the effectiveness of the proposed method.


Learning Large Margin Sparse Embeddings for Open Set Medical Diagnosis

arXiv.org Artificial Intelligence

Fueled by deep learning, computer-aided diagnosis achieves huge advances. However, out of controlled lab environments, algorithms could face multiple challenges. Open set recognition (OSR), as an important one, states that categories unseen in training could appear in testing. In medical fields, it could derive from incompletely collected training datasets and the constantly emerging new or rare diseases. OSR requires an algorithm to not only correctly classify known classes, but also recognize unknown classes and forward them to experts for further diagnosis. To tackle OSR, we assume that known classes could densely occupy small parts of the embedding space and the remaining sparse regions could be recognized as unknowns. Following it, we propose Open Margin Cosine Loss (OMCL) unifying two mechanisms. The former, called Margin Loss with Adaptive Scale (MLAS), introduces angular margin for reinforcing intra-class compactness and inter-class separability, together with an adaptive scaling factor to strengthen the generalization capacity. The latter, called Open-Space Suppression (OSS), opens the classifier by recognizing sparse embedding space as unknowns using proposed feature space descriptors. Besides, since medical OSR is still a nascent field, two publicly available benchmark datasets are proposed for comparison. Extensive ablation studies and feature visualization demonstrate the effectiveness of each design. Compared with state-of-the-art methods, MLAS achieves superior performances, measured by ACC, AUROC, and OSCR.


Revisiting DocRED -- Addressing the False Negative Problem in Relation Extraction

arXiv.org Artificial Intelligence

The DocRED dataset is one of the most popular and widely used benchmarks for document-level relation extraction (RE). It adopts a recommend-revise annotation scheme so as to have a large-scale annotated dataset. However, we find that the annotation of DocRED is incomplete, i.e., false negative samples are prevalent. We analyze the causes and effects of the overwhelming false negative problem in the DocRED dataset. To address the shortcoming, we re-annotate 4,053 documents in the DocRED dataset by adding the missed relation triples back to the original DocRED. We name our revised DocRED dataset Re-DocRED. We conduct extensive experiments with state-of-the-art neural models on both datasets, and the experimental results show that the models trained and evaluated on our Re-DocRED achieve performance improvements of around 13 F1 points. Moreover, we conduct a comprehensive analysis to identify the potential areas for further improvement. Our dataset is publicly available at https://github.com/tonytan48/Re-DocRED.


Class-Adaptive Self-Training for Relation Extraction with Incompletely Annotated Training Data

arXiv.org Artificial Intelligence

Relation extraction (RE) aims to extract relations from sentences and documents. Existing relation extraction models typically rely on supervised machine learning. However, recent studies showed that many RE datasets are incompletely annotated. This is known as the false negative problem in which valid relations are falsely annotated as 'no_relation'. Models trained with such data inevitably make similar mistakes during the inference stage. Self-training has been proven effective in alleviating the false negative problem. However, traditional self-training is vulnerable to confirmation bias and exhibits poor performance in minority classes. To overcome this limitation, we proposed a novel class-adaptive re-sampling self-training framework. Specifically, we re-sampled the pseudo-labels for each class by precision and recall scores. Our re-sampling strategy favored the pseudo-labels of classes with high precision and low recall, which improved the overall recall without significantly compromising precision. We conducted experiments on document-level and biomedical relation extraction datasets, and the results showed that our proposed self-training framework consistently outperforms existing competitive methods on the Re-DocRED and ChemDisgene datasets when the training data are incompletely annotated. Our code is released at https://github.com/DAMO-NLP-SG/CAST.


Better Sampling of Negatives for Distantly Supervised Named Entity Recognition

arXiv.org Artificial Intelligence

Distantly supervised named entity recognition (DS-NER) has been proposed to exploit the automatically labeled training data instead of human annotations. The distantly annotated datasets are often noisy and contain a considerable number of false negatives. The recent approach uses a weighted sampling approach to select a subset of negative samples for training. However, it requires a good classifier to assign weights to the negative samples. In this paper, we propose a simple and straightforward approach for selecting the top negative samples that have high similarities with all the positive samples for training. Our method achieves consistent performance improvements on four distantly supervised NER datasets. Our analysis also shows that it is critical to differentiate the true negatives from the false negatives.


SentiPrompt: Sentiment Knowledge Enhanced Prompt-Tuning for Aspect-Based Sentiment Analysis

arXiv.org Artificial Intelligence

Aspect-based sentiment analysis (ABSA) is an emerging fine-grained sentiment analysis task that aims to extract aspects, classify corresponding sentiment polarities and find opinions as the causes of sentiment. The latest research tends to solve the ABSA task in a unified way with end-to-end frameworks. Yet, these frameworks get fine-tuned from downstream tasks without any task-adaptive modification. Specifically, they do not use task-related knowledge well or explicitly model relations between aspect and opinion terms, hindering them from better performance. In this paper, we propose SentiPrompt to use sentiment knowledge enhanced prompts to tune the language model in the unified framework. We inject sentiment knowledge regarding aspects, opinions, and polarities into prompt and explicitly model term relations via constructing consistency and polarity judgment templates from the ground truth triplets. Experimental results demonstrate that our approach can outperform strong baselines on Triplet Extraction, Pair Extraction, and Aspect Term Extraction with Sentiment Classification by a notable margin.