Xu, Kuang
Gaussian Imagination in Bandit Learning
Liu, Yueyang, Devraj, Adithya M., Van Roy, Benjamin, Xu, Kuang
Assuming distributions are Gaussian often facilitates computations that are otherwise intractable. We consider an agent who is designed to attain a low information ratio with respect to a bandit environment with a Gaussian prior distribution and a Gaussian likelihood function, but study the agent's performance when applied instead to a Bernoulli bandit. We establish a bound on the increase in Bayesian regret when an agent interacts with the Bernoulli bandit, relative to an information-theoretic bound satisfied with the Gaussian bandit. If the Gaussian prior distribution and likelihood function are sufficiently diffuse, this increase grows with the square-root of the time horizon, and thus the per-timestep increase vanishes. Our results formalize the folklore that so-called Bayesian agents remain effective when instantiated with diffuse misspecified distributions.
Hierarchical Causal Bandit
Song, Ruiyang, Rini, Stefano, Xu, Kuang
Causal bandit is a nascent learning model where an agent sequentially experiments in a causal network of variables, in order to identify the reward-maximizing intervention. Despite the model's wide applicability, existing analytical results are largely restricted to a parallel bandit version where all variables are mutually independent. We introduce in this work the hierarchical causal bandit model as a viable path towards understanding general causal bandits with dependent variables. The core idea is to incorporate a contextual variable that captures the interaction among all variables with direct effects. Using this hierarchical framework, we derive sharp insights on algorithmic design in causal bandits with dependent arms and obtain nearly matching regret bounds in the case of a binary context.
Learner-Private Online Convex Optimization
Xu, Jiaming, Xu, Kuang, Yang, Dana
Online convex optimization is a framework where a learner sequentially queries an external data source in order to arrive at the optimal solution of a convex function. The paradigm has gained significant popularity recently thanks to its scalability in large-scale optimization and machine learning. The repeated interactions, however, expose the learner to privacy risks from eavesdropping adversary that observe the submitted queries. In this paper, we study how to optimally obfuscate the learner's queries in first-order online convex optimization, so that their learned optimal value is provably difficult to estimate for the eavesdropping adversary. We consider two formulations of learner privacy: a Bayesian formulation in which the convex function is drawn randomly, and a minimax formulation in which the function is fixed and the adversary's probability of error is measured with respect to a minimax criterion. We show that, if the learner wants to ensure the probability of accurate prediction by the adversary be kept below $1/L$, then the overhead in query complexity is additive in $L$ in the minimax formulation, but multiplicative in $L$ in the Bayesian formulation. Compared to existing learner-private sequential learning models with binary feedback, our results apply to the significantly richer family of general convex functions with full-gradient feedback. Our proofs are largely enabled by tools from the theory of Dirichlet processes, as well as more sophisticated lines of analysis aimed at measuring the amount of information leakage under a full-gradient oracle.
Query Complexity of Bayesian Private Learning
Xu, Kuang
We study the query complexity of Bayesian Private Learning: a learner wishes to locate a random target within an interval by submitting queries, in the presence of an adversary who observes all of her queries but not the responses. How many queries are necessary and sufficient in order for the learner to accurately estimate the target, while simultaneously concealing the target from the adversary? Our main result is a query complexity lower bound that is tight up to the first order. We show that if the learner wants to estimate the target within an error of $\epsilon$, while ensuring that no adversary estimator can achieve a constant additive error with probability greater than $1/L$, then the query complexity is on the order of $L\log(1/\epsilon)$ as $\epsilon \to 0$. Our result demonstrates that increased privacy, as captured by $L$, comes at the expense of a \emph{multiplicative} increase in query complexity. The proof builds on Fano's inequality and properties of certain proportional-sampling estimators.
Query Complexity of Bayesian Private Learning
Xu, Kuang
We study the query complexity of Bayesian Private Learning: a learner wishes to locate a random target within an interval by submitting queries, in the presence of an adversary who observes all of her queries but not the responses. How many queries are necessary and sufficient in order for the learner to accurately estimate the target, while simultaneously concealing the target from the adversary? Our main result is a query complexity lower bound that is tight up to the first order. We show that if the learner wants to estimate the target within an error of $\epsilon$, while ensuring that no adversary estimator can achieve a constant additive error with probability greater than $1/L$, then the query complexity is on the order of $L\log(1/\epsilon)$ as $\epsilon \to 0$. Our result demonstrates that increased privacy, as captured by $L$, comes at the expense of a \emph{multiplicative} increase in query complexity. The proof builds on Fano's inequality and properties of certain proportional-sampling estimators.
Private Sequential Learning
Tsitsiklis, John N., Xu, Kuang, Xu, Zhi
We formulate a private learning model to study an intrinsic tradeoff between privacy and query complexity in sequential learning. Our model involves a learner who aims to determine a scalar value, $v^*$, by sequentially querying an external database and receiving binary responses. In the meantime, an adversary observes the learner's queries, though not the responses, and tries to infer from them the value of $v^*$. The objective of the learner is to obtain an accurate estimate of $v^*$ using only a small number of queries, while simultaneously protecting her privacy by making $v^*$ provably difficult to learn for the adversary. Our main results provide tight upper and lower bounds on the learner's query complexity as a function of desired levels of privacy and estimation accuracy. We also construct explicit query strategies whose complexity is optimal up to an additive constant.